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Abstract

This paper deals with hybrid populations in genetic algorithms. Age structured genetic algorithms were
introduced by N.Kubota and T. Fukuda in their paper [1]. This paper tries to combine the advantages of
traditional genetic algorithms and age structured genetic algorithms by using a hybrid population that consists
of individuals of both kind.
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1 Introduction

Solving difficult problems is one of the major challenges
of Computer Science. If we want to find the optimal so-
lution for a problem, we often have to search the whole
search tree of the problem. In some cases a subopti-
mal solution may be sufficient. There are ways to find
such a solution without searching the whole tree of the
problem.

Simple neighborhood search is one approach that
points in this direction. But the solution is usually
not be very good because the search might be stuck
in a local maximum. There are modifications to such
as simulated annealing that try to address this prob-
lem by allowing steps to worse solutions in some cases.
Another approach to avoid local maxima, is to perform
multiple neighborhood searches at the same time and
allow only the n best search states to survive. This
can also be seen as a mutation, selection approach, so
called evolutionary algorithms.

This approach already tries to simulate behavior
that we find in nature. The next step in this direction
is the paradigm of genetic algorithms. In this case, a
potential solution is encoded in the DNA of an indi-
vidual. Individuals may exchange parts of their DNA
in a process called crossover.

This paper is structured as follows. Section 2 de-
scribes the functioning of genetic algorithms (GA). Sec-
tion 3 presents the idea of age structured genetic algo-
rithms (ASGA) and their differences to regular GA.
Section 4 introduces the idea of hybrid populations.
Section 5 applies the hybrid algorithm to the TSP
problem and describes the experiments I performed.
Section 6 contains the conclusion of the experiments.

2 Genetic Algorithms

2.1 General concept

Genetic algorithms are an extension of the evolution-
ary approach. The analogy to nature is the following:
Evolution worked fine for millions of years. But the real
boost came when animals started to exchange genetic
material. Genetic algorithms are based on a evolution-
ary search with n individuals. The generation cycle is
enhanced by a phase called crossover, in which indi-
viduals exchange parts of their solutions to create new
ones.

This is not be as easy as it sounds: The solution
of a problem is usually restricted by a number of side
constraints. Mixing two solutions often results in the
violation of these constraints.

Furthermore, we would like to be able to provide a
framework for genetic algorithms that can be used to
solve many problems. The crossover method should be
independent of the problem.

2.2 Representing problem in GA

Again, nature gives us some hints: The DNA of an
animal only contains instructions on how to build the

animal, not the animal itself. Following this, we let
each individual only contain an implicit solution.

In GA, a problem is represented as a 3-tuple P =
(l, s, f), where

• l : I → N, a function that maps the instance of a
problem to the length of the gene.

• s : I, {0, 1}n → S a function that maps a DNA1

problem instance to its solution.

• f : I, {0, 1}n → R a function that maps a DNA
and a problem instance to a value that describes
how good the solution is. (fitness function)

In order to avoid invalid solutions, the fitness func-
tion has to include a penalty for this kind of solution.

2.3 Crossover

As said, crossover means exchange of genetic material.
There are always two individuals involved in a single
crossover. We will call these individuals the parents p1

and p2. Furthermore, a crossover results in the creation
of two individuals. We will call them the children c1

and c2. Now, there are different ways to decide which
bits of the parents should be parts of which child’s gene.
In this I will highlight three common approaches to do
that.

Roulette wheel selection In this approach, one
single random bit is exchanged in order to create the
children’s DNA.

Let c1[i], c2[i], p1[i] and p2[i] be the i-th bit in the
DNA of c1, c2, p1, p2 respectively.

Let r ∈ {1..l} be a random number, where l is the
length of the DNA.

∀i ∈ {1..l} : c1[i] =
{

p1[i] if i 6= r
p2[i] if i = r

Respectively, we do the same for c2. The DNA of c1

does not differ from p1 but in the one bit that has been
exchanged.

p1

p2

c2

c1

Figure 1: Roulette wheel selection

1I will use ”DNA” in this report to refer to the genetic in-
formation of individuals. I’m aware that DNA is actually the
shortcut for an acid.
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Cut selection In this approach, a random number
defines the position where the DNA is cut in both in-
dividuals. The right (or the left) part is exchanged

∀i ∈ {1..l} : c1[i] =
{

p1[i] if i ≤ r
p2[i] if i > r

p1

p2

c2

c1

Figure 2: Cut selection

Random selection For each i ∈ {1..l} we compute
a random number ri ∈ [0, 1).

∀i ∈ {1..l} : c1[i] =
{

p1[i] if ri < 0.5
p2[i] if ri ≥ 0.5

Respectively for c2 with the same ri.
This means: We decide for every bit in c1 separately

and randomly, whether it should be taken from p1 or
p2

Evaluation Even though the crossover should work
independently from the actual problem, the efficiency
of different selection types might vary from problem to
problem.

1. Knapsack problem: For the knapsack problem
Pk = (lk, sk, fk), we could define sk in a way, that
every bit in the DNA represents an item in the
set. 0 means that the item is not part of the so-
lution, 1 means that it is. [1, page 158] It makes
sense to use roulette wheel selection here. This is
like trying to select/deselect a single item in every
cycle. Cut selection might not work as well as the
roulette wheel, because it selects/deselects many
item at once.

2. TSP Problem: In section 5, I will use genetic algo-
rithms to solve the TSP problem. In this case both
cut selection and roulette wheel selection seem to
be reasonable. I will justify this in section 5 since
I do not want to get into to much detail right now.

2.4 The evolution cycle

One evolution cycle in genetic algorithms has the fol-
lowing structure:

1. Partitioning

2. Crossover

3. Mutation

4. Selection

Partitioning Since individuals die, when they per-
form the crossover, we do not want everyone to do that.
In particular, we want to conserve the better individ-
uals into the next generation and only let the worse
individuals perform the crossover. The idea behind
this is, not to loose good solutions.

Partitioning divides the population into two parts:
The better individuals are put into a temporary data
structure tmp. The others are marked to perform the
crossover.

Crossover Each individual in the marked subpopu-
lation is performing a crossover for a certain number
of times. The parents are chosen randomly and are re-
moved when they have reached their birth limit. The
children go into tmp.

Mutation With a certain probability, a random bit
in each individual in tmp is flipped. This still remains
from the evolutionary algorithms.

Selection The n best individuals from tmp are taken
into the next generation

The elitist scheme A variation is the elitist scheme.
This just means, that the best individual of the popula-
tion is directly taken into the new generation, without
mutation. It has been proved, that the elitist scheme
converges to the optimal solution.

2.5 Parameters

In conclusion to this section, the goodness of the so-
lution and the computation time of the algorithm de-
pends on these parameters:

• n ∈ N, the population size

• cp ∈ [0, 1], the crossover probability. This is
the percentage of the population that performs a
crossover each generation.

• br ∈ N, the birthrate. This is the number of
crossovers, each individual is involved in each gen-
eration.

• pm ∈ [0, 1], the probability for each individual to
mutate

• #g: the number of generation cycles that are per-
formed
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3 GA with age structure

Genetic algorithms with age Structure are described in
[1]. In this section I will give a short summary of the
problems they should solve, the idea, the way the work.

3.1 Problems with GA

Genetic Algorithms are usually able to solve problems
fairly well in a reasonable time. In general the principal
holds: The better the solution, the longer the time to
wait.

The population size n and the number of generations
#g mainly define what percentage of the solution space
was actually covered by the search.

Local maxima are usually avoided because multiple
searches are run. If, however, there is a large area in the
search space that contains good solutions, surrounded
by an area that contains worse solution, then there is
still a chance for genetic algorithms to get stuck in the
first area because all the individual that would be able
to escape it, die. Of course, it is possible to escape, but
it might take a long time until that happens.

If we were able to spread the individuals over a wider
area in the search space, then situations like this would
be less likely. We would eventually be able to find
better solutions in a better time.

3.2 The idea of age structure

The idea of age structure contains two observation from
nature concerning higher animals:

• Individuals usually do not die when they bear chil-
dren.

• Individuals do not live forever. They die of old
age.

Age structured genetic algorithms (ASGA) integrate
this idea of age into the idea of Genetic Algorithms.

Every individual in the population gets an additional
feature: its age. When a child is born, the age is set to
zero. When the individual performs a crossover, it is
still put into the temporary data structure along with
its children. The age of every individual is increased in
every generation cycle. Finally we define a probability
pa for each age a that describe how likely it is for an
individual at age a to survive. For one a, the lethal
age, the survival probability is always zero.

The partitioning phase in the generation cycle is now
modified to apply the age operator to every individual.
First it checks, if this individual should perform and
crossover. And then it checks independently from that,
if the individual should die or survive.

3.3 Expected effects of age structure

The general cause of these changes is:

• There are more possibilities for bad individuals to
survive, because they do not automatically die,

when the are performing a crossover. If they are
good enough to survive the selection process, they
will survive.

• There are more possibilities for good individuals
to die, because they do not survive indefinitely,
but die at a certain age.

This reduces the evolutionary pressure that lies on
the population. The expectation is that the genetic di-
versity is age structured populations is higher remains
higher than in traditional populations.

3.4 Experiments

The paper [1] describes some tests using the knapsack
problem. One of the main results is showed in figure
3. We are not interested in the AGA graph. The other
graphs show, that it takes longer for the ASGA ap-
proach to gain fitness, but the final fitness is higher
then the one in the GA approach.

Figure 3: Fitness after n generations in ASGA, AGA
and GA [1]

3.5 A note on partitioning

It is not specifically described in [1] how the partition-
ing process works in detail. It makes sense, for genetic
algorithms always to have to worst individuals perform
a crossover and let the best individuals survive. The
experiment in section 5.3 shows that. The alternative
would be to pick the individuals randomly.

In ASGA however, individuals do not die on
crossover. It might make sense to pick individuals ran-
domly in this approach. One reason, why I was not able
to completely reproduce the results from [1] is, that it
lacks of a details description of the experiments.

4 Hybrid Populations

Obviously both approaches have there benefits and
drawbacks:
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• GA has a less overall performance concerning the
goodness of the solution.

• ASGA has less evolutionary pressure, so it might
take longer to get to a good solution.

The main goal is in all algorithmic problems is to
get a good (optimal) solution fast. The idea of hybrid
populations is to combine the approaches of GA and
ASGA to get the benefits of both approaches.

4.1 The structure of hybrid popula-
tions

A hybrid population (HPGA) consists of two subpop-
ulations:

• Individuals that behave like in the ASGA ap-
proach.

• Individuals that behave like in the GA approach.

It is possible for individuals of both subpopulations to
mix their genetic material.

Concretely In HPGA, age is a feature of an indi-
vidual. Although it is not included in the DNA, it is
treated like a part of it:

Let p1, p2 be the parents and c1, c2 be the children
involved in a crossover, α, r ∈ [0, 1) where r is a random
number and α is defined. Furthermore c1.asga = true
if the individual c1 has the age feature.

Then

c1.asga =
{

p1.asga if r > α
p2.asga if r ≤ α

Respectively for c2 with the same r.

4.2 Preventing extinction

As said in section 3.4 it takes longer for ASGA popu-
lation to get to a higher fitness than for GA popula-
tions. For hybrid populations, this means that in the
beginning of the algorithm, GA individuals are be pre-
ferred by the selection process. In the extreme case, the
ASGA subpopulation would shrink to such a small size
that it cannot recover. It might even be extinguished.
For this reason, I chose to modify the selection and the
crossover process as well:

• The sizes of the subpopulations are fixed. Instead
of a total population size, the parameters for the
algorithm are a size for the ASGA subpopulation
and a size for the GA subpopulation.

• The selection process ensures that the sizes of the
subpopulations match these parameters in every
generation.

This can mean that good solutions are discarded
while worse solutions are chosen, if there are already
too many good solutions taken from one subpopula-
tion.

0 1 2 3

7654

8 9 10 11

15141312

10 units

Figure 4: The TSP instance used for the simulations

4.3 Expected effects

Hybrid Populations can be viewed as two subpopula-
tions with different purposes:

• The GA subpopulation applies more evolutionary
pressure, thus converges fast.

• The ASGA subpopulation has less evolutionary
pressure, thus converges slower, but finds ways out
of local maxima faster that the GA subpopulation.

By performing crossovers between the populations,
both subpopulations have the ability to communicate
their results to each other.

The expectation is, the hybrid population finds bet-
ter results than GA and finds them faster than ASGA.

5 Experiments

5.1 General setup

All the experiments performed use the same general
setup. I use a specific instance of the euclidean TSP
Problem (figure 4) and try to solve it using different
population sizes. The different parameters are stated
in the discussion of each particular simulation. In this
section, I will discuss the model that I used to represent
TSP. I define Pt = (lt, st, ft) as follows:

Solution representation An instance of the TSP
consists of a set of (numbered) cities. A solution is a
permutation of the order of these cities.

In order to represent the number of a city in binary,
we need x = dlog2 ce bits, where c is the number of
cities. The DNA just represents the permutation of
cities in binary.

Example: For 4 cities, the DNA String 00|10|11|01
would represent the permutation 0, 2, 3, 1. Each city is
represented in two bits.

The length of a gene is then c · dlog2 ce.

Fitness function The TSP tries to minimize the
length of the path, but the genetic algorithm tries to
maximize the fitness. Thus, I define the fitness to be

ft = − length of path − penalty
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The penalty counts the number of different cities
that are contained in the solution. In a valid solution,
every city appears exactly once. In order to ensure that
valid solutions always have a better fitness than invalid
ones, the penalty function evaluates to x · 2.0 · dmax,
where x is the number of cities that are not contained
in the solution and dmax is the maximal distance be-
tween two cities.

Crossover scheme The crossover scheme is roulette
wheel selection, although cut selection would make
sense as well. I used only one scheme for the exper-
iments, because I wanted to test the effect of hybrid
populations and not of different crossover scheme.

Roulette wheel selection and cut selection both make
sense for this representation of the TSP problem, be-
cause the do not destroy existing sub-paths in the so-
lution. Roulette wheel might change one city in the
path. If the path was already correct in mentionable
parts, it is likely, that it does not destroy these parts.
The same is true for cut selection but not for random
selection.

5.2 Interpretation of values

There are lots of values that can be derived from the
simulations. I consider two values to be important:

• Best fitness: The individual with the best fitness
represents the solution that would be presented if
the algorithm stopped in this generation. There-
fore, the best fitness of the population is the value
that describes, how successful the population is.

• Standard deviation: The standard deviation of the
fitness distribution can be seen as a measurement
for the genetic diversity of the population. A high
standard deviation means that the algorithm also
allows weaker individuals to survive. The genetic
diversity in the population is higher. A standard
deviation that is very close to zero often means,
that only one solution exists in the population,
maybe with very few variations caused by muta-
tion.

5.3 Experiment: Partitioning scheme

This experiment determines, whether it is more ade-
quate to use random selection or selection of the worst
in the partitioning phase (see section 3.5).

Setup I run 30 experiments in the every combina-
tion of GA/ASGA and random/worst selection. The
values for population size, birthrate, crossover proba-
bility2 and mutation probability is 50, 5, 0.7 and 0.05
respectively. The survival probability for ASGA indi-
viduals is 0.9, 0.9, 0.5, 0.0 for the first, second, third
and fourth year.

2For worst-selection this means that the 30 · 0.7 worst indi-
viduals perform the crossover

Each simulation runs for 200 generations. Figure 5
shows the average best fitness of each generation and
the average standard deviation.
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Figure 5: Best fitness and standard deviation with dif-
ferent partitioning strategies

Analysis Considering GA, the worst-selection
scheme seems to be the better choice, since it brings
both better results and a higher diversity than the
random selection scheme. For ASGA the result is
quite unexpected. Random selection brings a better
result, but the standard deviation converges to zero.
Worst selection on the other hand maintains the
diversity, but the best fitness is worse than in any
other approach.

The bad performance of ASGA may have been
caused by the small lethal age. However, different other
tests have shown, that the standard deviation in both
ASGA and GA converges to zero very quickly, when
the random selection scheme is applied.

Thus, for further experiments, I will not use
random selection anymore

5.4 Experiment: Subpopulations

This experiment tests hybrid populations with different
sizes of the subpopulations.
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Figure 6: Fitness and standard deviation with different
subpopulation sizes

Setup The population size, birthrate, crossover
probability and mutation probability is 100, 5, 0.7, 0.05
respectively. The survival probability for ASGA indi-
viduals is 0.9 until and including the age of four, 0.5 at
the age of five and 0.0 at the age of six. The paper [1]
suggested a lethal age of 5 generations, which I used as
basis.

I performed 30 simulations, each with subpopula-
tions of 0, 25, 50, 70 and 100 ASGA individuals. I
measured the average values of best fitness and stan-
dard deviation. The results are shown in figure 6.

Analysis Figure 6 shows, that the pure ASGA Pop-
ulation (ga=0 asga=100) has a bigger standard devia-
tion than the other populations. The genetic diversity
is higher. On the other hand, the value for the best
fitness is far below the on of the other populations.

This result does not meet the expectations. In fact,
it also contradicts the results of [1]. I will talk about
this later in my conclusion.

All hybrid populations have a lower diversity than
both pure populations. The fitness values show that
there is no big difference between 0, 25 and 50 ASGA
individuals.

The conclusion of this experiment is, that pure GA
works better than both ASGA and Hybrid Populations.

6 Conclusion

I have performed more simulations with different con-
figurations and some simulations with the knapsack
problem. There was one configuration for the knap-
sack problem that really achieved a better result using
ASGA. For the TSP and all configuration, the result
was similar the one describe in section 5.4.

There might be different reasons for this result:

1. My program is buggy. I doubt it, since the pro-
gram is not very big and I debugged it extensively.
It is however very hard to identify this kind of bug
because the program is highly depending on ran-
dom numbers.

2. I did not exactly reproduce, the test conditions
that N.Kubota and T.Fukuda used. This might
be, because the configuration was not explained in
the necessary detail (e.g. the size of the problem)
in the paper. However, they performed multiple
tests with different configurations as well and in
every configuration, ASGA performed better that
GA.

3. Since the paper does not talk about the size of
the simulated problem, it is not possible for me
to compare the length of the DNA for TSP and
knapsack. Though, I also tried the TSP Problem
with less cities (9) and the result was the same.

I can think of several reasons for my results, but they
all don’t seem to be very convincing.

One of the hybrid populations performed about as
good as the pure population, but the genetic diversity
was always much lower.

As the experiment in section 5.3 shows, the diversity
also depends on selection scheme that is applied during
the partitioning phase.

In contrast to my assumptions, the ASGA individ-
uals performed rather badly. But the worst selection
scheme is applied to both subpopulations. If the whole
ASGA population has a lower fitness than the GA pop-
ulation, then some individuals with a better perfor-
mance were chosen for the crossover. The number of
individuals and their rating depends on the size of the
subpopulations. In the cases ”ga=25 asga=75” and
”ga=50 asga=50”, the worst GA individuals have a
rather high fitness compared to whole population. This
might be a reason for the rapid decrease of the standard
deviation.

For further experiments, one might want to ignore
the danger of extiction and just select the worst indi-
viduals of the whole population for crossover.

The complete source of my simulation suite is avail-
able on [2].

A note on my references I attended a lec-
ture about optimization algorithms[3] held by Prof.
Karsten Weihe at the University of Technology in
Darmstadt. Genetic Algorithms were discussed in this
lecture very briefly.
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I read a lot about genetic algorithms in the WWW,
but I did not read it specifically for this project. In
fact, I read most of it a few years ago. That is why
I didn’t give any references to papers about genetic
algorithms.
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