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Zusammenfassung

Sicherheit in der Informationstechnik ist heutzutage ein wichtiges Teilgebiet
der Informatik. Diese Arbeit behandelt einige spezielle Sicherheitsprobleme im
Bereich der sogenannten �Drahtlosen Sensornetze�.

Drahtlose Sensornetze sind ein aktuelles Forschungsthema im Gebiet des
�Pervasive and Ubiquitous Computing�. Ein Sensornetz besteht aus tausenden
von Sensorknoten, die z.B. in Katastrophengebieten, zur Umweltkontrolle oder
in Überwachungs- und Alarmanlagen eingesetzt werden können. Ein Sensor-
knoten besteht aus einer CPU, Speicher, einer Funkeinheit, einer Sensoreinheit
und einer Batterie zur Stromversorgung. Nach der Aktivierung bilden die Sen-
sorknoten selbständig ein Ad-Hoc-Funknetzwerk über das Messdaten in Form
von Berichten an eine Basisstation, genannt Senke, weitergeleitet werden. In
vielen Szenarien werden Berichte nur dann erzeugt, wenn die Messung eines
Sensors einen kritischen Wert annimmt. Zusätzlich zu dem eigentlichen Mess-
wert kann der Bericht noch einen Zeit- und eine Ortsangabe des Ereignisses
enthalten.

Aufgrund der begrenzten Energieversorgung und aus Kostengründen verfü-
gen Sensorknoten in der Regel nur über eingeschränkte Rechen- und Speicher-
kapazitäten. Dieser Ressourcenmangel ist maÿgebend für die Herausforderun-
gen im Bereich �Sicherheit in Sensornetzen�. Ein Angreifer verfügt in der Regel
über mehr Kapazitäten als ein einzelner Sensorknoten. Die Implementierung
asymmetrischer Kryptographie ist aufgrund des Ressourcenmangels schwierig,
wenn nicht unmöglich. Ausserdem sind Sensorknoten oft physisch angreifbar,
da sie in Gebieten ausgelegt werden, zu denen ein potentieller Angreifer Zugang
hat. Manipulationssichere Hardware wird in Sensorknoten aus Kostengründen
normalerweise nicht verwendet. Das bedeutet, dass ein Angreifer, der physika-
lischen Zugang zum Sensorknoten hat, Teile des Programms verändern oder
geheime kryptographische Schlüssel aus dem Speicher des Knotens auslesen
kann. Verschlüsselungs- und Authenti�zierungsmechanismen können auf diese
Weise umgangen werden. Der Angreifer kann die gewonnenen Schlüssel da-
zu einsetzen, sich gegenüber dem Netzwerk zu authenti�zieren und dann den
Netzwerkverkehr abzuhören oder falsche Berichte in das Netz einzuschleusen.

In der vorliegenden Arbeit wird ein Verfahren beschrieben, dass folgende
Angri�e behandelt: Erstens versucht ein Angreifer, falsche Nachrichten in das
Netz einzuschleusen, um damit einen Fehlalarm auszulösen. Zweitens versucht
er, Berichte, die von anderen Sensorknoten erzeugt wurden, zu verfälschen.
Drittens ist es sein Ziel, die Energiereserven von weiterleitenden Knoten an-
zugreifen, indem er eine groÿe Menge von Nachrichten einschleust. Dabei wird
davon ausgegangen, dass der Angreifer Zugri� auf die Hardware der Sensorkno-
ten hat und mit einem gewissen Zeitaufwand geheime Schlüssel von einzelnen
Knoten extrahieren kann.

Das Ziel des im Rahmen dieser Arbeit entwickelten Systems ist, diese An-
gri�e zu verhindern bzw. den Aufwand, den der Angreifer betreiben muss, zu
maximieren. Die Auswirkung eines physikalischen Angri�s soll auf das Gebiet
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im Netz beschränkt bleiben, in dem Sensorknoten kompromittiert wurden.
Wird ein gröÿerer Bereich des Netzes kompromittiert, so soll die Leistung des
Netzes kontrolliert zurückgehen, d.h. ein Angreifer, der an einer bestimmten
Stelle im Netz Knoten kompromittiert hat, soll nur Berichte fälschen können,
die sich auf ein Ereignis an der gleichen Stelle beziehen.

Das beschriebene Verfahren basiert auf einer heterogenen Netzstruktur.
Zusätzlich zu den ressourcenschwachen �kleinen Knoten�, die den oben ge-
nannten Einschränkungen unterworfen sind, wird eine kleine Anzahl �groÿer
Knoten� eingesetzt, die über eine schnelle CPU, viel Speicher, eine Funkeinheit
mit gröÿerer Reichweite und eine unbegrenzte Energieversorgung verfügen. Auf
der Basis eines solchen Netzwerks wird ein hybrides Schema zur Nachrichten-
�lterung entwickelt, das asymmetrische Kryptographie auf den groÿen Knoten
und symmetrische Algorithmen auf den kleinen Knoten einsetzt. Dieses Sche-
ma trägt den Namen �hybrid en-route �ltering scheme� (HEFS).

Um zu verhindern, dass ein kompromittierter Knoten alleine gefälschte Be-
richte einschleust, werden diese von einer Gruppe mehrerer Sensorknoten ge-
meinsam erzeugt. Jeder Knoten dieser Gruppe bestätigt den Bericht mithilfe
von �Message Authentication Codes� (MAC) und ein Bericht ist nur dann gül-
tig, wenn eine vorgegebene Anzahl von MACs angehängt wurde. Ein groÿer
Knoten dient als Zwischenstation, prüft die angehängten MACs, signiert den
Bericht im Falle einer erfolgreichen Prüfung mit einer asymmetrischen ditiga-
len Signatur und schickt die Nachricht dann weiter Richtung Senke. Auf dem
Weg zur Senke wird die Nachricht sowohl von kleinen als auch von groÿen
Knoten weitergeleitet. Jeder groÿe Knoten, der am Routing beteiligt ist, prüft
die digitale Signatur.

Die Sensorknoten, die den Bericht erzeugen, verwenden zwei verschiedene
MACs, um die Integrität der Nachricht zu sichern: Die LMAC wird von dem
groÿen Knoten geprüft, der die Nachricht digital signiert. Die SMAC wird zu-
sammen mit der digitalen Signatur von der Senke überprüft, um sicherzustel-
len, dass kein kompromittierter groÿer Knoten alleine eine gültige Nachricht
erstellen kann. Für den Fall, dass zwar eine gültige Signatur, aber eine falsche
SMAC vorliegt, lässt sich die Zahl der verdächtigen Knoten stark einschränken.
Über eine Langzeitanalyse solcher �degenerierter Berichte� versucht die Senke
schlieÿlich, kompromittierte Knoten im Netz zu erkennen und zu entfernen.

Die Schlüssel, die für die Erzeugung der MACs verwendet werden, besit-
zen nur einen eingeschränkten örtlichen Gültigkeitsbereich. Auf diese Weise
wird verhindert, dass ein Angreifer die an einer Stelle im Netz gewonnenen
Schlüssel benutzt, um gültige Berichte zu erzeugen, die eine andere Ortsan-
gabe enthalten. Weiterhin sorgt die gruppenbasierte Berichterzeugung dafür,
dass der Angreifer eine Mindestzahl von Knoten kompromittieren muss, um
gefälschte Berichte zu erzeugen.

Wenn ein Angreifer Nachrichten einschleust, um die Energieversorgung von
Knoten anzugreifen, ist für den Gesamtenergieverbrauch des Netzes ausschlag-
gebend, wie viele Knoten eine solche Nachricht weiterleiten. In HEFS wird
eine eingeschleuste Nachricht erkannt und herausge�ltert, sobald sie von ei-
nem groÿen Knoten empfangen und überprüft wird. Um die Auswirkungen ei-
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nes solchen Angri�s zu ermitteln, wurde HEFS als Proof-Of-Concept in einem
Java-basierten Simulator implementiert. Das Einschleusen von Falschnachrich-
ten wurde ebenso simuliert wie die Erzeugung von echten Berichten. In den
Simulationen wurde der Energieverbrauch des Sensornetzes gemessen und mit
dem Verbrauch eines simulierten Sensornetzes ohne HEFS verglichen. Als Ver-
gleichsnetz diente sowohl ein homogenes Netz ohne groÿe Knoten als auch ein
heterogenes Netz.

Die Auswertung zeigt, dass ein Netz mit HEFS dann weniger Energie ver-
braucht als ein heterogenes Netz ohne HEFS, wenn die Anzahl der eingeschleus-
ten Nachrichten mindestens um zehn Prozent höher ist als die Anzahl der
Berichte, die wirklich aufgrund von Messwerten erzeugt wurden. Dieser Aus-
wertung liegt ein Szenario zugrunde, in dem eine Nachricht durchschnittlich
88-mal weitergeleitet wird, bevor sie die Senke erreicht, und in dem hundert
groÿe Knoten (und 3900 kleine Knoten) eingesetzt werden. Im Vergleich zum
homogenen Netzwerk verbraucht HEFS im gleichen Szenario schon dann we-
niger Energie, wenn etwa 30 Prozent der Nachrichten gefälscht sind.

Vergleicht man Netzwerke, die kein HEFS einsetzen, untereinander, so stellt
man fest, dass der Energieverbrauch allein schon durch den Einsatz groÿer Kno-
ten gesenkt wird. Dies ist auf die gröÿere Funkreichweite und die angenommene
unbegrenzte Energieversorgung dieser Knoten zurückzuführen.

Das beschriebene Verfahren beinhaltet auÿerdem einen Algorithmus zur
Langzeitanalyse degenerierter Berichte. Ein Angri�, der durch den Einsatz ei-
nes Analysetools erst möglich wird, besteht darin, gezielt degenerierte Berichte
einzuschleusen, die die Senke dazu verleiten, unkompromittierte Knoten aus
dem Netzwerk zu entfernen. Der von uns vorgestellte Algorithmus ermöglicht
die Erkennung eines kompromittierten groÿen Knotens anhand von drei dege-
nerierten Berichten und zwingt den Angreifer gleichzeitig, mindestens sieben
kleine Knoten zu kompromittieren, um einen groÿen Knoten aus dem Netzwerk
auszuschlieÿen.

Abschlieÿend schlagen wir Forschungsgebiete vor, die sich durch die Ent-
wicklung von HEFS ergeben haben und präsentieren Schwächen und Verbes-
serungsvorschläge unseres Schemas.



Abstract

The security of information technology is an important area of computer
science. This thesis addresses speci�c security problems of a technology called
wireless sensor networks.

Wireless sensor networks are a current research topic in the area of ubiq-
uitous and pervasive computing. A network of thousands of sensor nodes can
be deployed in a number of scenarios such as disaster sites, environmental
monitoring or surveillance. Each node is equipped with a sensor unit, a low-
power radio unit, a low-power CPU, memory, and a battery. After deployment,
the motes build a wireless multihop ad-hoc network and forward reports with
measurements to a base station called sink.

The main challenge in the area of sensor network security are resource
limitations: Energy, computing and memory resources are limited, so that
public-key cryptography is di�cult to apply. On the other hand, an attacker
can often gain physical access to the sensor nodes. An attacker who compro-
mises one or multiple nodes can extract secret keys from their memories and
use this data to inject false reports into the network.

The goal of this thesis is to detect and drop such false reports as early
as possible. The impact of an attack should be limited to the region of the
compromised node. As the attacker compromises more nodes, the network
should degrade gracefully but never be completely compromised.

In this thesis, we assume a heterogeneous network structure: A network
consists of many small node that are subject to the limitations described above
and of a small number of large nodes that have plenty computing, memory and
energy resource. We develop a �hybrid en-route �ltering scheme� (HEFS) that
uses public-key cryptography on the large nodes and symmetric algorithms on
the small nodes in order to achieve the presented goals.

In order to evaluate HEFS, we have performed a proof-of-concept imple-
mentation in a Java-based simulator. We have simulated the injection of false
messages as well as the creation of valid reports, and we have compared the
energy consumption to a network without en-route �ltering.

The evaluation shows that HEFS can signi�cantly reduce the energy con-
sumption caused by injected messages, and that a heterogeneous network struc-
ture can reduce the energy consumption of small nodes, even if no en-route
�ltering protocol is applied.
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Chapter 1

Introduction

The security of information technology is an important area of computer sci-
ence. In the beginning of computer technology and networking, protocols and
systems were often designed without a focus on security. The results are still
noticeable today. For example, the mail transfer procotol SMTP was originally
designed without support for data integrity, authenticity and con�dentiality.
Nowadays there are optional extensions of the protocol that allow data encryp-
tion and digital signatures, but these extensions are rarely used in practice.
This is partly because the setup of a security infrastructure is not trivial, but
also because the extensions are optional and not part of the core protocol. It
is di�cult to add security measures later-on, when compatibility issues have
to be considered as well.

The motivation of this thesis is to develop security mechanisms for a new
technology before it is deployed on a large-scale. This technology is called
�wireless sensor networks�. In this chapter, we describe the basic architecture,
hardware components, use cases and challenges of wireless sensor networks.
Based on this introduction, we then given an overview over the chapters of
this thesis.

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is the composition of thousands of small wireless sensor
network, WSNbattery-powered sensor nodes called motes1 and a base station called sink.
motes

sink
Each mote is equipped with a small processor and memory, a radio unit and
a sensor unit. The task of a sensor network is to perform measurements of
the environment (e.g. temperature, brightness, humidity, seismic stimuli) and
collect the results at the sink. Since the radio transmission range of a single
sensor may not be powerful enough to reach the sink directly, the motes create
an ad-hoc network and forward the results to the sink on a multi-hop route.

A popular mote-type is the MICA2 Mote [5] (see �gure 1.1) of the Smart-
Dust project at the University of California in Berkeley. It uses a 16 MHz
Atmel ATMega128L processor with 512 kBytes of �ash memory for measure-

1In this thesis, the words mote and sensor node are used analogously.
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Figure 1.1: MICA2 mote [1] Figure 1.2: SunSpot mote [2]

ments, 4 kBytes of con�guration EEPROM and 128 kBytes of program mem-
ory. The power source consists of two AA batteries.

Another recent development is the Java SunSpotTM [4] (see �gure 1.2).
It uses a 180 MHz, 32-bit ARM920T processor with 512 kBytes RAM and
4 MBytes �ash memory. Energy is provided by a 3.6 V rechargeable 750 mAh
lithium-ion battery.

1.1.1 Operational scenarios

Originating from military research projects, sensor networks have found their
way into the civil world. There is a large variety of scenarios in which sensor
networks can be applied or are already in use. These applications include
wildlife monitoring, environmental monitoring (temperature, water pollution,
humidity), medical monitoring (medical implants measuring heartbeat) and
monitoring disaster sites.

Another application is the use as surveillance system or the extension of
an existing surveillance system: A system called Shot Spotter [7], that is dis-
cussed controversially by some parties [9], consists of microphones which may
be mounted on wireless sensors nodes. These microphones are deployed in
urban areas to triangulate the sound of gun shots. In [29], a sensor network
is used as extension to an existing video surveillance system, for example on
a university campus. It consists of microphone sensors that pick up loud au-
dio events such as screams and direct the attention of the observing security
people to the appropriate cameras.

Finally, an interesting application is the observation of structural integrity
in buildings, bridges and other structures [34, 23]. The traditional approach
uses expensive data aquisition systems, which are connected to seismic, vi-
bration, moisture, temperature and displacement sensors using a lot of wiring.
With such a system the setup of wires and sensors can take hours, which means
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that an installation aimed for a few-hours measurement is highly uneconomi-
cal [34].

Wireless sensor networks in such a scenario are cheaper and easier to install
than their wired alternatives. The installation only consists of putting the
sensor nodes in the right places and activating the network. The routing
paths are created by the network automatically. This makes such short-term
measurements economical, but it also reduces the cost of long term installations
that run over multiple months or years.

The use of wireless battery-powered motes is not restricted to outdoor
scenarios: A �re detector system, that is installed in an old building, can be
considerably cheaper if no additional wires have to be installed.

1.1.2 Challenges of Sensor Networks

The main challenge when developing sensor network applications and middle-
ware is the scarcity of resources. The technical data shows that the CPU is
slow (16 MHz on a MICA2), the available memory is small (4 kBytes RAM and
128 kb program memory) and the energy supply is limited (max. 3000 mWh
when using two AA batteries). There are two reasons for this scarcity:

1. Since a sensor network consists of a large number of motes, each single
mote must be cheap. Otherwise, a sensor network would not be econom-
ical.

2. Motes are commonly assembled from low-power components. Especially
in long-term scenarios, reducing the energy consumption is more impor-
tant than increasing the computing resources.

The resulting challenge is to design protocols and algorithms that minimize the
consumed energy. Table 1.1 summarizes measurements performed by Arvin-
derpal S. Wander et al. [32]. They compared the energy consumption of mes-
sage transmissions, symmetric cryptography and public-key cryptography on
a MICA2dot mote. This mote is based on the same components as the MICA2
mote. The table shows that radio transmissions consume more energy than
symmetric cryptography.

Symmetric
Cryptography

AES-128 encryption 1.62 µJ/byte
AES-128 decryption 2.49 µJ/byte
SHA-1 5.90 µJ/byte

Radio usage
Energy to transmit 59.20 µJ/byte
Energy to receive 28.60 µJ/byte

Public-Key-
Cryptography

ECDSA-160 sign 22820.00 µJ
ECDSA-160 verify 45093.00 µJ

Table 1.1: Energy consumption of a MICA2dot [32]
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Since most non-cryptographic computations are less expensive than sym-
metric cryptography, this table shows that message transmission are generally
more expensive than computations.

E�cient routing protocols are needed. They must be capable of minimizing
transmissions between the nodes and scalable enough to handle a network with
thousands of network members. Depending on the scenarios they must also
support mobile sensor nodes.

One approach for the reduction of radio transmissions is the in-network
data aggregation. The goal is to let intermediate nodes perform computations
and forward only the aggregated result of multiple incoming messages, in order
to reduce the number or transmitted messages.

Another challenge is the handling of node failure: Sensor nodes may stop
working because their battery is empty or because they are destroyed by natu-
ral (or human) forces. Routing protocol and sensor network applications must
be able to deal with such occurences.

The creation of security frameworks for sensor networks presents a number
of additional challenges: An attacker is usually not bound to the same resource
constraints as the network. Public-key cryptography is di�cult to implement
in sensor networks because of the resource constraints (see table 1.1). And
�nally, an attacker may have physical access to sensor nodes and thus be able
to extract secret cryptographic keys from their memory.

All problems must be resolved without user interaction because the network
acts autonomously in most scenarios.

1.2 Thesis structure

This thesis develops and evaluates a scheme to lower the impact of a speci�c
attack in a heterogeneous sensor network. Chapter 2 describes the security
problems and common attacks on sensor networks and points out which at-
tacks are relevant to this thesis. Chapter 3 presents related work and the
state-of-the-art in sensor network security. Chapter 4 introduces the notion
of heterogenous sensor networks and describes the developed scheme, that we
call hybrid en-route �ltering scheme (HEFS). In order to evaluate the e�-
ciency of HEFS, we have implemented the scheme in a simulated environment.
The implementation details are presented in chapter 5. Chapter 6 presents
the simulation results and the evaluation of HEFS. Finally chapter 7 draws a
conclusion.

Appendix A contains an overview over the variables and function names
used in this thesis and a clari�cation of common terms and mathematical
notations.
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Chapter 2

Sensor network security

Sensor networks may be deployed in critical scenarios (e.g. when a malfunc-
tioning network results in danger to human life or great �nancial loss). Such
networks must be protected against human intrusion. Consider a sensor net-
work acting as �re warning system in an old building, where exhaustive wiring
is too expensive. A potential attacker may want to disable the system or cre-
ate false alarms, thereby provoking the evacuation of the building. In the �rst
case, life is in danger. In the second case, he may cause a considerable �nancial
damage or at least undermine the trust in the alarm system.

2.1 Classes of attackers

On a technical level, attackers can be distinguished by the amount of resources
and by the amount of secret information that is available to the attacker. The
�rst distinction divides adversaries into laptop class and mote class attack-
ers [20]:

• A laptop class attacker has the resources of a larger computer and pos- laptop class
attackersibly a larger transmission range than a node.

• A mote class attacker has modi�ed the program of a sensor node and mote class
attackerattacks the network through this mote. This means that his computing

resources are as limited as the resources of the other nodes.

The second distinction separates the attacker into insider and outsider attack-
ers [36, 35, 38, 37]:

• An outsider attacker tries to attack a network solely on the wireless outsider
attackerchannel.

• An insider attacker gathers physical access to a sensor node and uses insider attacker

the information stored in this node to attack the network. This type of
attacker can use secret cryptographical keys of this node to attack the
network.
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2.2 Types of attacks

In this section, we assume that the network is either unprotected or threatened
by an insider attacker. We show common attacks that are discussed in the
literature.

Sybil attack In the sybil attack [14], an attacker can incoorporate multiple
node identities by sni�ng the network tra�c for valid ID numbers. This can
be used to change the outcome of polls or aggregation functions or to perform
other attacks.

Selective forwarding attack The selective forwarding attack [20] is a typ-
ical denial-of-service attack. A node controlled by the attacker1 participates in
the building of a routing tree, meaning that other nodes will try to relay mes-
sages over this node. The attacker examines each message and then decides
whether to forward or to drop it. If necessary, an ACK reply is sent back, even
if the message has been dropped.

Blackhole attack The blackhole attack [20] is a simple form of the selective
forwarding attack, where messages are dropped without prior examination.

Data alteration attack Instead of dropping messages on a forwarding node,
the attacker can also change the header or payload data of forwarded messages.
This kind of attack is called a data alteration attack [12].

False data injection attack In an unprotected network, the attacker can
simply sni� the tra�c for a valid node ID and perform a sybil attack to �be-
come� this node. Then he can create messages and inject them into the network
in order to provoke a false alarm or in to falsify measurements. The attack is
called a false data injection attack [36].

Path-based denial of service attack The path-based denial of service
attack (pDoS-attack) [13, 36] is similar to the false data injection attack, but
the goal is a di�erent one: By injecting messages on a large scale, the energy
of forwarding nodes is consumed. This attack is successful, as long as the
intermediate nodes forward injected messages. A detection mechanism at the
sink is not a su�cient counter-measure. The pDoS-attack has a multiplied
e�ect compared to other DoS-attacks because the attacker can drain all nodes
on the route to the sink by sending messages from only one spot.

Wormhole attack The wormhole attack [20] is usually used as preparation
for other attacks. In order to preserve energy, most routing protocols try to
forward messages along the shortest route to the sink. A laptop class attacker

1The node can be compromised but may also be a node introduced to the network by
the attacker.
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can boost the signal from a distant location to a location near the sink and
thereby create a path with fewer hops. The nodes near the starting-point of
this wormhole then recognize the attacking node as next hop on the shortest
route to the sink and use it to relay messages. The attacker then controls
the connections of a whole region and can perform di�erent attacks such as
blackhole, selective forwarding or data alteration.

Replay attack As in wired networks, an attacker can simply replay messages
that he sni�ed from the network for reasons of battery exhaustion or in order
to exploit security weaknesses. This attack is called a replay attack [12].

Routing loops A more subtle type of attack, that is aimed on battery ex-
haustion, is the creation of routing loops [20]. The attacker in�uences the
creation of the routing tree to provoke the formation of loops. If a message
gets caught in such a loop, it is forwarded inde�nitely and drains the energy
of the forwarding node.

Eavesdropping Eavesdropping is basic attack on all kinds of computer net-
works. The additional problem of wireless sensor network, is that an insider
attacker can listen in on the tra�c that is routed through a compromised node,
even if the communication is encrypted. It is hard to detect such an attack
because the attacker does not perform any action that could be detected by
other sensor nodes.

2.3 Relevant attacks

The detection and prevention of each of these attacks discussed cited publica-
tions. It is di�cult to address all attacks at once. Most publications focus on
a single attack or on a set of attacks.

This thesis is primarily concerned with the false data injection attack, the
data alteration attack and the path-based denial of service attack. In order
to secure a sensor network against other attacks, other protocols have to be
implemented and integrated as well.
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Chapter 3

Related Work

This thesis develops a mechanism for en-route �ltering which is a subtopic ofen-route
�ltering sensor network security. In order to implement this mechanism, basic authen-

tication and encryption schemes must be already present. Section 3.1 presents
two such schemes. Section 3.2 discusses the advantages and disadvantages
of existing en-route �ltering schemes. Section 3.3 describes two compression
schemes for Message Authentication Codes (MAC). These methods are used in
the developed hybrid en-route �ltering scheme (HEFS) order to decrease the
communication overhead. In HEFS, we assume a sensor network that contains
a small number of sensor nodes with larger resources. We assume that these
nodes are able to perform public-key cryptography. Section 3.4 examines the
e�ect of public-key cryptography on the low-resource nodes of such a network.

3.1 Encryption and authentication

Due to the lack of resources, sensor nodes generally use only symmetric cryp-
tography to encrypt and authenticate communication channels. Messages are
encrypted with symmetric algorithms and shared secret keys. Authentication
is provided by MACs that are attached to each message.

Symmetric cryptography has a major disadvantage compared to public-key
cryptography: Encrypting and decrypting messages requires the knowledge of
the same key. The same holds for the creation and veri�cation of a MACs.
Consequently, an attacker who has extract a veri�cation key, can also use this
key to endorse reports.

This limitation raises the question of how keys should be distributed in
a secured network and whether authenticated broadcasts are possible. The
following sections present protocols that address this question.

3.1.1 Key distribution

The question of how the keys should be distributed is vital to the security of
sensor networks. There are two trivial approaches to this problem:

1. One key is shared among all nodes in network. This approach is
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insu�cient against insider attackers, since the key is immediately known
to the attacker once he has compromised one node.

2. Each node-pair in the network shares pre-distributed pair-wise
key. This method is infeasible on low-resource sensor nodes or at least,
does not scale well. On a network of 10000 nodes, every node would have
to store 10000 keys of 8 bytes length1. Storing 80000 bytes is infeasible
on a MICA mote with four kilobyte of RAM.

The second approach assumes that every node has to communicate with every
other node in the network. Normally, secure communication only needs to
be possible among neighboring nodes and between each node and the sink.
The problem of pre-distributed keys is, that prior to the deployment of the
network, it may be impossible to determine which nodes will be neighboring
nodes post-deployment.

One approach to perform the key distribution post-deployment is described
in the Localized Encryption and Authentication Protocol (LEAP) [39]. This LEAP

protocol makes the assumption that it is impossible for an attacker to com-
promise a node during a pre-de�ned time interval after deployment. This
assumption is reasonable, since the area of deployment can be secured from
adversaries during that time. LEAP di�erentiates between four types of keys:

1. Individual keys are shared between a node and the sink individual keys

2. Cluster keys are among a node and all surounding nodes that are in cluster keys

communication range. These keys are used when the node wants to send
an encrypted broadcast message to all neighboring nodes.2

3. Pairwise keys are shared between two nodes that are in communication pairwise keys

range. These keys are used when a node sends a message to one explicit
destination node.

4. The group key is shared among all nodes and the base station. group key

For the initialization of the di�erent key types, LEAP uses a family of
pseudo-random functions fK(x) which have the properties of a MAC-function fK(x)
(MACK(x)).

Individual keys and the group key The individual key for a node a is
generated from a master secret Km by computing K indiv .

a = fKm(IDa). That
way, the base station does not need to store all keys, but can compute them
from the master secret when needed. The individual keys are loaded into the
nodes prior to deployment. The same is done with the group key.

1The assumption of 64-bit keys is common in all referenced publications.
2Note that, in later sections, the word cluster has the meaning of multiple nodes working

together to create a report. In LEAP, every node is the center of a cluster that consists of
all nodes reachable within one hop.
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Pairwise keys Prior to deployment, a shared initialization secret KI is
loaded into each sensor node. Each node a generates a master key Ka =
fKI

(IDa). Then it discovers the ID of its neighbors and computes their master
secret as well. Discovery is done as follows, considering b is a neighbor of a:

a −→ ∗ : IDa, nonce
b −→ a : IDb, MACKb

(IDb, nonce)
(3.1)

The pairwise key is then computed as Kpairw.
a,b = fKb

(IDa). Intermediate
results such as Kb, Ka and KI are erased after key setup.

Cluster keys After setting up the pairwise keys, each node generates a
random cluster key. It then transmits this key to each one-hop neighbors
using the appropriate pairwise key for the encryption of each message.

Key update LEAP proposes the following action for a key update after a
compromised node has been detected.

1. Each node creates a new cluster key and sends it to all neighbors except
the compromised nodes.

2. The sink generates a new group key and broadcasts it through the net-
work. The broadcast is encrypted with the cluster key of each trans-
mitting node, which means a re-encryption of the message after each
hop.

3.1.2 Authenticated broadcasts

A way to circumvent the need for public-key signatures in secure broadcasts
has been published by A. Perrig et. al. in SPINS [26]. The protocol is called
µTESLA and is based on hash-chains. Hash-chains have been �rst introducedµTESLA

by Leslie Lamport 1981 in [21]:

De�nition: 3.1 A one-way hash-chain is a series of n + 1 valueshash-chain

S(x) for x ∈ {0, . . . , n} (3.2)

that are de�ned through a cryptographical hash-function H(x) and an initial-
ization value I. The last value of the chain is

S(n)
def.
= I (3.3)

The remaining values S(i), i < n of the chain are de�ned as

S(i)
def.
= H(S(i + 1)) = Hn−i(I) (3.4)
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Such a series is called a one-way hash-chain because it is only possible to
derive S(i) from S(j) if i < j. Even if S(i) is known, it is infeasible to compute
S(i + 1) as long as the hash function is strong enough. But it is possible to
verify whether S(i+1) is correct if S(i) is known. This can be done by verifying

S(i)
?
= H(S(i + 1)) (3.5)

As a result, only someone, who knows the initialization secret I, is able to
provide the whole chain in the order S(1), S(2), . . . S(n), but anybody knowing
the �rst value S(0) is able to verify the chain.

Lamport's original application of hash-chains was the generation of one-
time-passwords: A hash-chain of n values is generated. The verifying party A
stores the value S(0) and the authenticating party B stores the end of the chain
(or the whole chain). During the authentication process, B sends b = S(1) to

A. A veri�es that H(b)
?
= S(0) and allows A to log in. Then B replaces the

stored value S(0) by b. For the next log in, A sends the value S(2) to B.
Such a scheme allows B to verify the authenticity of A without knowing

the authentication secret.
One-way hash-chains can be used on low resource sensor nodes because no

public-key operations are required.

µTESLA µTESLA uses hash-chains to ensure the authenticity of a broad-
cast message. The sink stores a hash-chain S(i). The �rst the chain S(0)
is stored on each node of the network before deployment. The sink and the
nodes maintain a global counter. It represents the index of the �rst value in
the chain that is not known to the sensor nodes. This counter is initialized to
c = 1 and increased after a speci�ed time interval.

In µTESLA, the values of a hash-chain are used as MAC-keys. The sink
attaches a MAC to every broadcast message M , to ensure integrity and au-
thenticity:

sink −→ ∗ ∗ 3 : M, c, MACS(c)(M) (3.6)

The nodes cannot verify the authenticity of the message immediately because
the value S(c) is unknown to them. They can however verify that the value c
is valid.

The value S(c) (commitment) is broadcasted through the network after the commitment

counter has been increased. There may be a speci�ed delay after the end of
the validity period of S(c) in order to compensate inaccurate system clocks
in the sensors. When a sensor receives S(c), it �rst validates it by checking
H(S(c)) = S(c − 1) and then veri�es the MAC of the message. If the MAC
is correct, it re-broadcasts the commitment and accepts the stored message as
authentic. Figure 3.1 illustrates the µTESLA protocol.

Discussion µTESLA can be used to broadcast authenticated messages with-
out the application of public-key cryptography. It is not possible for an attacker
to send forged broadcast messages to the nodes.

3multi-hop broadcast, see appendix A
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Figure 3.1: Illustration of the µTESLA protocol: The authenticity of the
messages A and B can be veri�ed after the broadcast of S(1).

A denial of service attack is possible due to the fact that receiving nodes
have to store broadcasts until they receive the commitment. An attacker can
send multiple broadcast messages into the network, until the nodes' restricted
bu�er memory is exhausted. The nodes can then accept no more broadcast
messages. An authentic message sent by the sink can be blocked by such an
attack.

3.2 False data injection and pDoS-attack

After the presentation of basic encryption and authentication methods, this
section discusses some of the recently published en-route �ltering schemes.en-route

�ltering These schemes contain concepts that are also used in the hybrid en-route �l-
tering scheme (HEFS).

En-route �ltering schemes try to detect and drop an injected messages as
early as possible. The goal is to prevent path-based denial of service attacks
(pDoS-attacks), false data injection attacks and data alteration attacks. In
order to clarify the notation, we use the following terms throughout this thesis:

• An event is a measurement that has to be reported by the sensor network.event

• The location of an event is the actual location where a stimulus occurs.location (event)

• A report is the message that is sent to the sink in reaction to an event.report

• The location of a report is the location at which the stimulus happenedlocation
(report) according to the report. In case an attacker forges or modi�es a report

this location can di�er from the location of the event.

• The point of injection of a message is the location where the message ispoint of
injection injected into the network.

• The location of a key is the location for which this key is valid. Aloation (key)

valid report must have the same location as the keys used to create the
attached MACs.
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3.2.1 Multiple report authentication and en-route veri�-

cation

Fan Ye et al. present a scheme for Statistical en-route �ltering of injected false
data (SEF) [36] to address the problem of false data injection as well as the SEF

path-based DoS attack. They introduce two basic ideas:

1. Multiple report authentication: The report of an event is authen-
ticated by multiple nodes. One node (the cluster head) assembles the cluster head

actual report and neighboring nodes attach MAC signatures after per-
forming a plausibility check. The feasibility of this procedure naturally
depends on the application's sensor model.

2. En-route veri�cation: The keys used for the MAC generation are
shared by random nodes in the network. With a certain probability, a
forwarding node can verify one of the MACs attached to the report and
drop the report if it is invalid.

Two parameters can be adjusted in the system:

1. T is the number of MACs that must be attached to a valid report (i.e.
the number of nodes agreeing to a report).

2. n is the total number of MAC keys distributed to the nodes4.

Sequence of operations Before deploying the nodes, n keys are generated
and distributed such that each node stores exactly one randomly selected key
Ki. Each key is stored on multiple sensor nodes.

Figure 3.2 illustrates this scheme. The highlighted nodes store the same
key. When an event is perceived, the following actions are executed:

1. The sensor nodes, which detect the event, choose a cluster head among
themselves.

2. The cluster head generates a report R containing the location, type and
time of the event. This report is sent to the neighboring nodes.

3. Each neighboring node uses its sensors to verify the plausibilty of the
received report. If the report is plausible, it returns MACKi

(R) to the
cluster head.

4. The cluster head chooses T MACs from the helper nodes and sends(
R, i1, i2, . . . , iT , MACKi1

(R), MACKi2
(R), . . . , MACKiT

(R)
)

(3.7)

to the sink, where i2 is the ID of the key Ki2 .

Every node en-route to the sink, that node stores the appropriate keys, veri�es
the correctness of MACKi

(R). If the MAC is invalid, the report is dropped.
In all other cases, the report is forwarded.

4The actual key distribution scheme describe in SEF is more complex: Keys are divided
into k categories with n

k keys each. For simplicity, we assume that k = n, thus every category
contains exactly one key.



14 CHAPTER 3. RELATED WORK

Figure 3.2: Illustration of the statistical en-route �ltering scheme

Discussion If the attacker knows x < T of the n keys, he must guess the
remaining T − x MACs in order to create a valid report. The probability that
a node stores the key belonging to a guessed MAC is T−x

n
. Assuming that it is

impossible to guess a correct MAC, the probability that a node cannot verify
the authenticity of the report is

p(x) = 1− T − x

n
(3.8)

The probability that a forged report travels more than h hops, is then:

ph(x) =

(
1− T − x

n

)h

(3.9)

For example, if n = 10, T = 5 and the attacker knows one key, there is
a 90 percent probability that an injected report is �ltered after four hops.
With three compromised keys, the 90 percent probability is at ten hops (see
�gure 3.3).

The drawback of the scheme is, that once the attacker is in possession of
T di�erent keys, he can create arbitrary false reports with arbitrary locations
and inject them at any point in the network. He can �nd these T di�erent keys
in the neighborhood of any sensor node because otherwise the scheme would
not work. An attacker can �nd out which keys are stored on which node, by
listening in on the radio, locate T nodes with di�erent keys and compromise
them. Afterwards, he possesses enough information to generate forged reports
with arbitrary locations. In this case, the whole scheme becomes useless.

3.2.2 Location-based keys

In order to �x this problem, Fan Ye et al. published a follow-up scheme [35]
that introduces the concept of location-based keys. The basic idea is, that thelocation-based

keys MAC keys are not distributed randomly but are bound to a certain location.
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Figure 3.3: Number of dropped reports after h hops for 1, 3 and 4 compromised
keys

A report is only valid if the keys used to generate the T MACs are valid for
the location of the report. The localization of MAC keys requires a new form
of key distribution and a more sophisticated approach to MAC veri�cation.
The scheme with location-based keys is based on the following assumptions:

1. The attacker is unable to compromise any nodes within the �rst few
minutes after deployment (similar to LEAP in section 3.1.1)

2. Nodes possess a localization component that allows them to discover
their own location. The deployment area is divided in cells as illustrated
in �gure 3.4.

3. A geographic routing protocol is used in the network. It is assumed that
such a protocol provides little deviation of the direct path from event to
sink. Respecting this deviation, a node can only receive messages from
the upstream-region, which is illustrated as gray beam in �gure 3.4. This upstream-region

region can be computed from the location of the sink and the location
of the node.

Key setup Prior to deployment, a number of initialization secrets KI
s is

generated and each node is pre-loaded with one of them. In the initialization
phase, all nodes aquire their location and derive the cell (x, y) they are in.
This location is used to compute the endorsement key endorsement

key

Kx,y,s = MACKI
s
(x, y) (3.10)

for each node. Each node also determines its upstream-region and computes
and stores Kx,y,s for a random selection of the intersecting cells. These keys
are used to verify reports later.
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Figure 3.4: System setup with localized keys [35]

Report generation The report generation and en-route veri�cation works
similar to section 3.2.1. For the generation of reports, only the localized en-
dorsement key is used. The generated report is(

R, s1, s2, . . . , sT , MACKx,y,s1
(R), MACKx,y,s2

(R), . . . , MACKx,y,sT
(R)

)
(3.11)

where R as in section 3.2.1 contains the location information (i.e. the cell) of
the event.

Veri�cation Each verifying node performs two checks:

1. It veri�es that the location of the report (x, y) is in the upstream region
of the node and drops the report if it is not.

2. If the node stores any of the keys Kx,y,s1 , . . . , Kx,y,sT
it veri�es the corre-

sponding MAC of the report and drops the report if the MAC is invalid.

Discussion The goal of this scheme is, to prevent creating a fake report,
without actually compromising T nodes at the location of the report. This
goal is achieved partly. For example, if an attacker compromises T nodes at
location (1, 1) (see �gure 3.4), he can only create false reports from the same
location. These reports will only reach the sink if they are injected into any
node that has this location as part of its upstream region. Reports injected
at other locations (e.g. cell (1, 5)) are dropped because then, the upstream-
region-check of the forwarding nodes fails. If the attacker tries to use the
compromised keys to create a report from the location (1, 5), and a forwarding
node stores K1,5,si

, then this node will detect the forgery and drop the message.
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The problem with this scheme is that the endorsement keys of a cell (e.g.
cell (1, 1)) are also stored as veri�cation keys on the en-route nodes. An at-
tacker can gather these keys by comprising enough en-route nodes without
actually being in cell (1, 1).

If the network protects a specially secured area to which an attacker has
no physical access, then the attacker can raise false alarms there after compro-
mising enough nodes that have this area in their upstream region.

3.2.3 Using hash-chains

In section 3.1.2 we presented µTESLA as a method for authenticated broad-
casts using hash-chains. µTESLA is not suitable for en-route �ltering for the
following reason:

• En-route �ltering means that each node veri�es the signature before for-
warding the message.

• In µTESLA, a node can only verify the message (M, c, S(c)) after receiv-
ing S(c).

• Consequently, a node has to forward the message after the broadcast of
S(c). This is after the end of the validity period of S(c)).

When the �rst verifying node could forward the message, the MAC-keys would
not be valid anymore.

Defending against pDoS A di�erent approach to use one-way hash-chains
against the path-based DoS attack is presented in [13]. The setup is as follows:

• Each node a stores a hash-chain Sa and a counter i which is initialized
with 0.

• Each intermediate node on the routing path of a stores Sa(0) as veri�-
cator.

Whenever a creates a message to the sink, it attaches the next element Sa(i+1)
of the hash-chain to the report and increases i by one. All forwarding nodes
verify the authenticity of Sa(i + 1) and store this value as next veri�cator.
This scheme is not designed as a defence against insider attackers. When one
node is compromised, it is possible for the attacker to perform a pDoS-attack
using the hash-chain of this node.

Multiple chains The fault localized scheme for false report �ltering in sen-
sor networks [38] is an extension of this scheme presented in [13]: Multiple
nodes endorse a report with the next elements of their hash-chains. In ad-
dition, each node creates a MAC using an individual key (see 3.1.1). These
MACs are attached to the message, in order to enable the sink to verify the
report. Hash-chains and individual MAC keys are bound to the location of
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the endorsing sensor node in the sense that the sink knows what the location
of the sensor node is.

In the veri�cation process, each forwarding node veri�es the number of
hash-values. If it possesses the previous value of a hash-chain, it also veri�es the
corresponding hash-value. If it possesses no previous value of any hash-chain
in the message, it cannot verify the authenticity of any hash-value. The fault-
localized scheme does not explicitly address this case, but a similar situation
occurs when new nodes are deployed while the network is already running.
These nodes also do not store any previous hash-values and simply forward
messages without veri�cation.

Discussion Hash-chains are an e�ective way of limiting the number of mes-
sages injected into the network. An attacker cannot inject new messages into
the network unless he gathers enough hash-chains by compromising nodes.

One drawback of hash-chains is the trade-o� between space and computing
time on the generating node. There two extreme approaches of storing a hash-
chain on the generating node:

1. Only the last value is stored. Every value is computed on-demand. This
method causes a signi�cant overhead of computing time and energy.

2. Every value of the chain is stored. This method uses a lot of memory
and is therefore infeasible on small sensor nodes.

There are trade-o�s such as storing only every k-th value of the chain. Nev-
ertheless, the generating nodes have to use a signi�cant amount of resources,
while the verifying nodes only need to store one hash-value and only have to
perform one hash-computation.

Apart from the resource concerns, the fault localized scheme for false re-
port �ltering in sensor networks eliminates the localized-key problem from
section 3.2.2: Intermediate nodes store neither the data necessary to generate
a valid hash-value nor the keys to create the MAC that is veri�ed by the sink.
Nonetheless, an alteration of the payload data would not be detected by the
forwarding nodes because the hash-values have no mathematical relation to
the payload of the message. The alteration would be detected at the sink, but
still consume energy on the intermediate nodes.

Another problem appears, when the attacker attaches node IDs of a com-
pletely di�erent region to the messages. The scheme in section 3.2.2 can drop
a report if the location is not found the upstream region of the node. In the
fault localized scheme, however, every node forwards the message because no
intermediate node knows the appropriate hash-values to verify the message.
An attacker can use this opportunity to perform a path-based denial of service
attack.
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3.3 Multiple MAC-Compression

Some of the presented schemes for en-route �ltering perform a report en-
dorsement by multiple nodes using Message Authentication Codes. In these
schemes, a signi�cant communication overhead is caused by the MACs and the
node IDs that are attached to every message. The MACs are the largest part
of this overhead: A MAC consists of at least 64 bit while a node ID, even in
a large network, is not larger than 16 bit. SEF and the fault localized scheme
present two di�erent mechanisms to reduce the size of the MAC values.

3.3.1 Bloom-�lters

The bloom-�lter is a probabilistic data-structure introduced 1970 by Burton bloom-�lter

H. Bloom [10] as a method of e�ciently testing the membership of an element
in a set. The space-/time-e�ciency comes at the price of occasional false-
positives. Bloom-�lters are commonly used in non-security applications such
as spell-checking. SEF adapts this data-structure to test the membership of
a MAC value in a set of MAC values, thereby compressing multiple MACs to
one value.

First, we will present the general de�nition of a bloom-�lter storing arbi-
trary elements:

De�nition: 3.2 Let C[i], i ∈ {0, . . . , n− 1} be a bit-array of length n and

fi : {0, 1}∗ 7→ {0, . . . , n− 1} ∀i ∈ {1, . . . , h} (3.12)

be a family of h hash functions.
A bloom-�lter represents a set S of elements using the bit-array C =

bloom(S). An empty set is represented by a bit-array that consists of zeros:

S = {} def.⇔ bloom(S) = [0, 0, . . . , 0] (3.13)

With C = bloom(S), the formalism for adding elements and testing the mem-
bership of an element in the set is:

e ∈ S
def.⇔ C[fi(e)] = 1. ∀i ∈ {1, . . . , h} (3.14)

Adding an element e to the bloom-�lter is equivalent to setting the bits
at position fi(e) to one while leaving the other bits untouched. Membership-
testing is done by verifying that all bits at fi(e) are set to one. Removing
elements from a bloom-�lter is not possible.

Bloom-�lters for MAC compression In order to use bloom-�lters to com-
press multiple MACs, three conditions must be ful�lled:

1. The hash functions fi must be cryptographically strong.
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2. The number of MACs m stored in a bloom-�lter, the number of hash-
functions h and the bit-length n of the bloom-�lter must be preset system
parameters. Each veri�er must not only perform the membership test
for a MAC but also verify that the number of ones in the bloom-�lter
does not exceed h ·m.

3. h ·m must be signi�cantly smaller than n.

The �rst condition ensures that the attacker cannot use collisions in the hash
functions. Of course, assuming a 64-bit bloom-�lter with 10 functions fi, a
collision of one fi can be found after 65 = 26 + 1 computations of fi, but
(26)10 + 1 = 260 + 1 computations are necessary in order to �nd a collision of
all hash functions if the hash functions are cryptographically strong.

The second condition prevents the attacker from using C = [1, 1, . . . , 1] as
valid value for a bloom-�lter. The third condition reduces the probability that
the attacker can guess the correct bloom-�lter value by setting h ·m random
bits to one.

3.3.2 XOR-cumulation

Another way to compress multiple MACs is to cumulate the MACs using the
bitwise XOR-function (denoted⊕). The compressed version of MACk1 , MACk2

and MACk3 is then

MAC⊕ = MACk1 ⊕MACk2 ⊕MACk3 (3.15)

The verifying party is assumed to be in possession of all keys used to create
the MAC. It can then verify the cumulated value by computing all MACs and
applying the ⊕-function.

This compression scheme is used in the fault-localized scheme [38].

3.3.3 Discussion

Both presented methods can and should be used in order to reduce the size of
the tail created by multiple MAC endorsements.

The XOR-cumulated MAC is smaller than the bloom-�lter and provides a
higher level of security. The verifying party has to know all MAC keys and
can only determine if any of the MACs are wrong.

The bloom-�lter is larger and vulnerable to false-positives, but it also is
more �exible: A veri�er can, given a list of key IDs verify for every single key,
whether it was used in the creation of the bloom-�lter or not.



3.4. PUBLIC-KEY CRYPTOGRAPHY 21

3.4 Public-key cryptography

The main problem of the scheme presented in section 3.2.2 is, that verifying
nodes must hold the generation keys. This problem could easily be solved by
public-key cryptography (PKC). There are several publications that evaluate public-key

cryptography,
PKC

the feasibility of running PKC algorithms on low-resource sensor nodes, by
measuring run-time and energy consumption of the computation. In HEFS,
we do not use PKC on low-resource nodes, but we do use such nodes to forward
messages signed with public-key signatures (see section 4).

This section therefore primarily focuses on the communication overhead
caused by the application of public-key schemes. First, we present mechanisms
to distribute the public keys throughout the network. Then, we discuss the
length of the keys and signatures in di�erent PKC algorithms.

3.4.1 Distributing public keys

PKC itself does not solve the problem of distributing the public-keys to the
nodes. There are three possible alternatives which are discussed in this section:

1. All public keys are preloaded into all nodes.

2. A certi�cate system is set up.

3. An ID-based public-key scheme is used.

Pre-distribution of public keys This method consumes a large amount of
memory on the sensor nodes. In section 3.1.1 we have discussed the infeasibility
of preloading pair-wise keys for all communication pairs into the sensor nodes.
Pre-distributing all public keys to all nodes would require each node to store
the same number of keys. Since PKC requires larger keys than symmetric
cryptography, the memory consumption would be even larger.

Certi�cate Authority Certi�cates are used in traditional computer secu-
rity to create a public-key infrastructure. A certi�cate authority (CA) creates certi�cate

authority, CAsignatures for the public keys of all participants in the network. When an
entity sends its public key to another entity, it can attach the certi�cate of the
CA in order to prove that the provided public key is authentic. An example
of a certi�cate-based system for sensor networks is TinyPK [33]. The goal of
TinyPK is not en-route �ltering, but to enable third parties to authenticate
themselves to the sensor network. The protocol uses public key operations
only to set up symmetric keys for further communication. The transmission
of the certi�cate and the public key has to be split up into multiple packages
because of the length of this data.

A certifcate authority could reduce the memory overhead caused by the
public keys. Nodes could send their public key towards the sink, so that
each en-route node could store exactly the public keys of nodes in its up-
stream region. The disadvantage is the large communication overhead caused
by transmitting the public keys and the certi�cates.
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ID-based signature schemes �Identity-based public-key signature schemes�
is a concept that was introduced by Adi Shamir in 1984 [28]. He presented an
infrastructure, in which the unique identi�er of a participant in the network
is also used as his public key. The private key is issued to the participant
by a key generation center and is computed from a secret global seed value kkey generation

center and the identity of the participant. In Shamir's work the key generation center
uses the trapdoor function of the RSA scheme to generate the private key from
the public key (i.e. the identi�er string) of the participant. The recipient of a
message can then use the (global) public key of the key generation center and
the identi�er string of the sender to verify the authenticity of a message.

This approach is very attractive for sensor networks because each sensor
node already has a unique identi�er that can be used as public key. This identi-
�er does not cause a signi�cant transmission overhead because it is usually not
larger than 2 bytes. The memory consumption is even smaller than in the CA-
approach: Each node only needs to store the public key of the key-generation
center and its own secret key.

In [37], Y. Zhang et al. use an identity-based signature scheme based on
elliptic curves for several security applications including the generation of pair-
wise keys, report-endorsement with multiple nodes and en-route veri�cation.
Instead of using a key generation center to generate the keys, the seed value
is pre-loaded into every sensor node prior to deployment. Based on the as-
sumption, that no node can be compromised during the �rst minutes after
deployment, each node generates a localized secret key and removes the seed
value from its memory afterwards.

We do not de�ne a concrete PKC scheme for HEFS, but ID-based PKC is
the most promising approach of the three presented methods.

3.4.2 Key- and signature-length

The length of keys and signatures of PKC is generally larger then symmetric
algorithms with the same security level. Table 3.1 is an extract of the �Yearly
Report on Algorithms and Keysizes� by the European Network of Excellence
in Cryptology [16]. For the size of a symmetric key (�rst column) it shows
the key sizes of equivalent security for RSA, algorithms based on the discrete
logarithm problem and elliptic curve cryptography. The size of the signature
depends on the size of public and private keys:

• For the signature algorithm of Rivest, Shamir and Adleman (RSA) [27]
signature algorithm, the signature is the same size as the RSA key (sec-
ond column of table 3.1).

• The Digital Signature Algorithm (DSA) [6], is based on the Discrete
Logarithm Problem (DLOG). The size of the signature is twice the size
of the sub�eld (fourth column of table 3.1).

• The Elliptic Curve Digital Signature Algorithm (ECDSA) [6], is based
on Elliptic Curve Cryptography, the size of the signature is twice the size
of the key (last column of table 3.1).
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Security RSA DLOG ECC
(bits) �eld size sub�eld

48 480 480 96 96
56 640 640 112 112
64 816 816 128 128
80 1248 1248 160 160
112 2432 2432 224 224
128 3248 3248 256 256
160 5312 5312 320 320
192 7936 7936 384 384
256 15424 15424 512 512

Table 3.1: Key-length equivalence of PKC concepts [16]

ECRYPT proposes a key length equivalent to 80 bits for long-term protection
against small organizations. For RSA signatures, this means that the signature
is 1248 bits long. DSA and ECDSA only need a length of 320 bits.

The size of the signature can be reduced even further: SFLASH [8] is a
signature scheme based on a system called Hidden Fields Equations (HFE).
It claims to provide the 80-bit security with a signature length of 259 bits.
Another scheme called QUARTZ [24] reduces the signature length to 128 bits,
with the drawback that the public-key has a size of 71 kBytes.

Another way of reducing the length of the signed message is to apply a
signature scheme with message recovery. In such a scheme, the message does
not have to be sent along with the signature because it can be reconstructed
during the veri�cation process. An ID-based signature scheme with message
recovery is presented in [31]. The signature in this scheme is 320 bits long,
but a message of 100 bits length can be reconstructed during the veri�cation
process.

The implementation in chapter 5 is based on the assumption that such a
scheme is used to authenticate messages. Since we only use 64-bit MAC keys,
we reduce the size the signature to 256 bits, which provides equivalent security.

3.5 Summary

In homogeneous sensor networks, the capabilities of e�cient en-route �ltering,
especially using localized keys, are limited: Hash-chains cannot guarantee the
integrity of a message, MAC keys have to be distributed on the en-route nodes,
and public-key cryptography is too energy consuming and to complex to be
applied in long-term scenarios on low-resource nodes.

In the next chapter, we will therefore use heterogeneous sensor networks
and present a hybrid scheme which uses both, public-key cryptography and
symmetric cryptography.
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Chapter 4

Concept

The methods presented in the last chapter are based on a homogeneous network
structure: All nodes have the same computing, memory and energy resources
and all nodes have equally strong radio units.

One of the reasons for the resource limitations of sensor nodes is the fact
that nodes have to be cheap: The cost of each node is multiplied by the
number of nodes in the network. This thesis shows that there are advantages in
deploying a small number of nodes that are more expensive and more powerful
than the nodes commonly deployed in the network. If the network is deployed
in a building, these nodes can even be attached to the power circuit without
creating too much cost.

Deploying such nodes is a trade-o� between e�ciency and cost. This chap-
ter develops a hybrid en-route �ltering scheme (HEFS) that tries to take ad-HEFS

vantage of a heterogeneous network structure.

4.1 Assumptions

In this chapter we assume an architecture which employs two types of nodes:

• Many small nodes with limited resources as assumed in the previoussmall node

chapters, such as the MICA2 mote.

• A small number of large nodes with a more powerful CPU and morelarge node

memory such as the SunSPOT. These nodes are also assumed to have a
larger radio transmission range and in�nite energy resources. We assume
that these nodes are capable of performing public-key operations in an
acceptable timespan.

The di�erent radio transmission range of a large node may result in uni-
directional links, where the large node is able to send a message but the small
node is not able to answer in one hop. We assume that the link-layer protocol
and the routing protocols are able to handle such uni-directional links. HEFS
is additionally based on the following assumptions:

• Individual, pairwise and cluster keys are set up using a technique such
as LEAP (see section 3.1.1).
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Figure 4.1: Heterogenous network structure with two types of nodes

• The sink is able to perform authenticated broadcasts using a scheme such
as µTESLA (see section 3.1.2).

• Small nodes are able to form clusters and elect cluster heads.

• We assume that the attacker has physical access to both large and small
nodes.

4.2 Brief overview

The �ltering scheme can be divided in two phases.

1. A report is created similarly to the �statistical en-route �ltering� scheme
desribed in section 3.2.1, but the report is sent to a nearby large node
instead of the sink. This large node is called transition node of the report transition node

R and denoted TN R. TN R

2. The transition node attaches a public-key signature to the report and
sends it to the sink. Large nodes en-route to the sink verify the signature.

We can see that both phases require di�erent routing protocols: The �rst phase
requires a protocol that sends messages towards the transition node. We call
this protocol transition routing protocol (TRP). In the second phase, the rout- TRP

ing protocol must send messages towards the sink. We call this protocol sink SRP

routing protocol (SRP). The SRP must prefer large nodes for the route to the
sink. We assume that both routing protocols already exist. The development
of such protocols is not in the scope of this thesis.
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Figure 4.2: Overview over the hybrid �ltering scheme

4.3 Keys and notation

Apart from the keys presented in LEAP, we employ three di�erent classes of
keys:

• Location-based individual keys (LBI-keys) are symmetric keys shared be-LBI-key, K lbi
a

tween each small node and the sink. These keys are bound to a location
as in the scheme described in section 3.2.2. The purpose of these keys is
to endorse a report with a MAC that is veri�ed by the sink. These keys
are denoted K lbi

a for a node a

• Local endorsement keys (LE-keys) are symmetric keys shared betweenLE-key, K le
a,A

each small node and nearby large nodes. These keys are also bound to
a location. Their purpose is to endorse a report with a MAC that is
veri�ed by the transition node. The LE-key, that is shared by a small
node a and a large node A, is denoted K le

a,A.

• En-route key pairs are public-private key pairs. Each large node A storesEn-route key
pair, κsec

A , κpub
A the secret key of an en-route pair (κsec

A ) and is able to retrieve the public
key (κpub

A ) of every other large node in the network using one of the
methods discussed in section 3.4.1. The sink has access to all public keys
as well. κsec

A is used by the transition node to sign reports and κpub
A allows

the en-route nodes and the sink to verify the signature.

In the rest of the chapter, the following notation is used:

• MACK(M) denotes a message authentication code computed from mes-MACK(M)
sage M with the key K.
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• 〈M〉A denotes a message M that has been signed with the private key 〈M〉A
κsec

A .

• IDa and IDA denote the identi�er string of node a and A respectively. IDa, IDA

This is generally a binary number long enough to provide a unique iden-
tity for every node.

The following system parameters can be adjusted:

• L is the number of large nodes that every small nodes sets up connections L

to (i.e. the number of LE-keys stored by each small node)

• T is the number of small nodes needed to endorse a report. T

4.4 Key establishment

As in LEAP, we assume that after deployment of the network there is a times-
pan in which no attacker can compromise any nodes. During this timespan,
individual keys, pairwise keys and cluster keys are established as described in
LEAP (see section 3.1.1). For the setup of LBI-keys and LE-keys, we reuse
LEAP's global initialization secret KI .

LBI-keys For the computation of the LBI-keys, we use a cryptographical
hash-function in MAC-mode with the master key KI as MAC key. During the
initialization phase, every small node computes

K lbi
a = MACKI

(IDa, location) (4.1)

When the sink receives a report (IDa, R, location) with a MAC attached. It
can compute the appropriate LBI-key on-the-�y and then verify the report.

LE-keys In order to set up the LE-keys, each large node A broadcasts a
HELO message with the same transmission power as the small nodes:

A −→ ∗∗ : (IDA, hA) (4.2)

The value of hA is initially zero and is increased by every forwarding node.
Then the large node computes and stores

K init
A = MACKI

(IDA) (4.3)

When a small node receives a HELO from large node A, it stores and re-
transmits the message

• if it has stored less than L HELOs so far or

• if it has stored L HELOs already, but hA is smaller than the hop count
of one of the stored HELOs. If this is the case, it looks for the stored
entry with the largest hop count and replaces it with the current HELO
message.
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After this procedure, each small node stores HELO messages from the nearest
L large nodes. For each of the stored messages, the small node a �rst computes
K init

A as in equation 4.3 and then

K le
a,A = MACKinit

A
(IDa, location) (4.4)

After the initialization phase, the small nodes remove KI and all K init
X securely

from their memory. The large nodes only remove KI and keep their K init
X .

When a large node A veri�es the MAC-signature of a message, it can compute
K le

a,A on-the-�y as long as IDa and the location record is sent along.
Note that an attacker who compromises A can generate valid K le

A,x for all
small nodes x. The knowledge of these keys is however irrelevant because
LE-keys are pairwise keys between one small node and one large node. The
compromised large node is the only node which uses this key to verify MACs.

The setup of LE-keys can be combined with the creation of the routing
tree of the transition routing protocol (TRP). We also assume that the TRP
only routes messages to large nodes for which an LE-key exists. This limits
the impact of pDoS-attacks on this protocol by limiting the distance of the
furthest target node.

Discrete locations We have assumed so far, that each small node can de-
termine its own location. The location information mainly depends on the
scenario and the sensor model. For example, in the forest-�re-detection sce-
nario, x and y coordinates would be an appropriate representation. A struc-
tural health monitoring system would have a z coordinate as well. It might
also have a completely di�erent system, that is based on the structure of the
building's carrier plates. The �re-alarm of a building might have location
information based on rooms and hallways.

It is di�cult to select an appropriate level of detail for the representation
of locations: On the one hand, the sensor network application may require
accurate location information. On the other hand, a higher level of detail
increases the memory consumption caused by the localized keys. When a
cluster of sensor nodes endorses a report, each sensor must store keys that are
valid for the report's location. If multiple locations are within the sensor range
of a node, then the node must generate keys for all of them. If the location
information is too detailed, the sensor node has to store more keys. This means
that less memory is available for the actual sensor network application.

We call the location accuracy needed for the application application-application-,
key-accuray,

locapp , lockey

accuracy (locapp) and the accuracy needed for localized keys key-accuracy
(locapp) and introduce a unique mapping

lm : locapp 7−→ lockey (4.5)

that maps a location record with application-accuracy to a location record with
key-accuracy. The report only contains a location record with application-
accuracy. When a node uses a localized key, it applies the mapping function
to the location record in order to compute the key-accuracy record.

In this section, we assume that a node can only endorse reports at a single
location and that the mapping lm is the identity function.
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4.5 Report generation

The generation of a report is split into two major phases that we call local
generation and transition.

Local generation When an event occurs, we assume that a number of small
sensor nodes can verify the measurement. We also assume that the nodes
have elected cluster heads among themselves. The local generation process is
initiated by a cluster head that measures the event:

1. The cluster head generates a report based on the measurements and cluster head,
CHsends it, encrypted with its cluster key, to the broadcast address:

CH −→ ∗ : R = (location, value, timestamp) (4.6)

2. Each neighboring node bx receiving the report performs a plausibility
check with its own sensors and returns

bx −→ CH : SM x, T N bx (4.7)

where T N bx

def.
= IDA1 , IDA2 , . . . is the set of potential transition nodes T Nbx

for which bx store LE-keys and SM x
def.
= MACK lbi

bx
(R). SM x

3. The cluster head chooses a transition node A that is found in at least
T sets T N bx . Then it chooses T helper nodes bi with A ∈ T N bi

, helper node

compresses their MACs into a bloom-�lter, and answers:

CH −→ {b1 . . . bT} : SMAC = bloom({SM 1, . . . , SM T}) (4.8)

4. Each helper node bi checks whether MACK lbi
bi

(R) ∈ SMAC and then
returns

bi −→ CH : LM i = MACK le
bi,A

(R, SMAC ) (4.9)

to the cluster head.

5. The cluster head computes LMAC = LM1 ⊕ . . . ⊕ LMT and sends the
whole report to the transition node A:

CH −→ A : (R, IDb1 , . . . , IDbT
, SMAC ,LMAC ) (4.10)

Transition When the transition node A receives the message, it generates
the LE-keys K le

b1,A, . . . , K le
bT

from the node IDs IDb1 , . . . , IDbT
, the location

of R and its initialization secret. K init
A (see section 4.4). Then it veri�es that

LMAC
?
=

T⊕
i=1

MACK le
bi,A

(R, SMAC ) (4.11)

If the LMAC doesn't match, the report is dropped because it is assumed to have
been modi�ed or injected. If the LMAC matches, the transition node computes
a public-key signature of (R, IDb1 , . . . , IDbT

, SMAC ) using its private key κsec
A

and sends
〈R, IDb1 , . . . , IDbT

, SMAC 〉A (4.12)

to the sink.
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4.6 Report veri�cation

The veri�cation of the report is done in multiple places:

En-route veri�cation One assumption about the routing protocol is that
it favors large nodes en-route to the sink. Every large node that forwards the
report veri�es the authenticity of the public-key signature using κpub

A . If the
signature is wrong, the report is dropped.

Sink veri�cation The sink also veri�es the public-key signature and drops
the report if it is wrong. Additionally, the sink computes the keys K lbi

b1
, . . . , K lbi

bT

from IDb1 , . . . , IDbT
, the location of R and the initialization secret KI . For

each key, it veri�es

∀i ∈ {1, . . . , T} : MACK lbi
bi

(R)
?
∈ SMAC (4.13)

If this condition is true, the report is accepted. If not, the report is rejected
and further actions are taken.

4.7 Immediate action

We call a report with a valid public-key signature and an invalid SMAC a
degenerated report. Such a report can be created by the network due to thedegenerated

report following reasons:

1. The transition node has been compromised. This allows the at-
tacker to create signed reports, but without the correct LBI-keys of a clus-
ter, he cannot create a correct SMAC. Nevertheless, he can still launch
a pDoS-attack to drain energy from the forwarding nodes.

2. Some nodes of the endorsing cluster nodes are compromised.
The above assumption alone would enable the attacker to frame an in-
nocent large node A by compromising a single small node. We call such
an attempt a frameup attack. The attacker can perform the followingframeup attack

actions during the local report generation process (see section 4.5) to
achieve his goal:

• In step 2 the compromised node returns a wrong (or arbitrary)
value for SM i. As a result, the cluster head would then compute
an invalid SMAC.

• In step 4 the compromised node computes MACK le
bi,A

(R, SMAC )

correctly and returns it to the cluster head although SM i 6∈ SMAC .

The transition node would then receive a report with a correct LMAC
and an incorrect SMAC . Since it cannot verify the SMAC , it attaches
a valid public-key signature.
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It is impossible to determine the exact node that is responsible for the degen-
erated report. However, since the bloom �lter allows a membership check of
distinct elements, we can determine the set GR of small nodes that might be GR

guilty of forging the SMAC of report R as

GR =
{
a . IDa ∈ {IDb1 , . . . , IDbT

} ∧ MACK lbi
a

(R) 6∈ SMAC
}

(4.14)

The set GR contains the IDs of all nodes whose SM i could not be found in
SMAC . Those MACs were presumably forged. We also de�ne the set GR GR

GR
def.
= {IDb1 , . . . , IDbT

} \ GR (4.15)

An exact identi�cation of the compromised node is impossible at this moment,
but the attacker de�nitely knows the keys:

K le
x,TNR

such that x ∈ GR (4.16)

If the attacker has compromised TN R, he can generate K le
x,TNR

for all small
nodes x. If he has compromised all small nodes x ∈ GR, he can extract the keys
from these nodes. Thus the immediate reaction of the sink to a degenerated
report is to broadcast a revocation instruction for these LE-keys. Afterwards
TN R refuses to act as a transition node for any node in GR and all nodes
a ∈ GR remove K le

a,TNR
from their memory.

4.8 Long-term analysis

In order to pinpoint the responsible nodes, the sink stores an evidence record. evidence record

ER = (TN R,GR,GR) (4.17)

for each degenerated report it receives. From the set of all evidence records,
the sink derives a scoring scorea for each node a. If the scorea exceeds a
treshold scoremax the sink sends an authenticated broadcast message through
the network ordering every node to isolated a from the network.

Computing the score A simple way to compute the score of a node a (or
A) is the static scoring scheme. In this scheme, the score is exactly the number static scoring

schemeof evidences ER with a ∈ GR for small nodes or A = TN R for large nodes.
A more sophisticated approach is the dynamic scoring scheme which also dynamic scoring

schemeexamines the number of false SMAC-components in a report R. With this
information, we can determine the e�ort that an attacker has to make to
create R. The nodes involved in actions with a lower e�ort receive a higher
score increment:

Suppose GR contains g elements. An attacker has to perform one of the
following actions to create such a degenerated report R:

1. Compromise the transition node TN R and modify the SMAC of an ex-
isting report such that g components are falsi�ed. This means that the
attacker must wait until a real report is generated and the compromised
node is chosen as the transition node.
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Figure 4.3: Actions leading to a degenerated report

2. Compromise TN R and T − g small nodes (GR). The attacker can then
use the stolen LBI-keys to generate T−g correct SMAC-components and
choose arbitrary values for the remaining ones. He can also generate the
signature using the secret key κsec

TNR
.

3. Compromise g small nodes (GR) and falsify the SMAC-components of
these nodes. This is only possible if a report is being generated by a
cluster containing the compromised nodes. Of course, if the cluster head
is compromised, the attacker can choose other compromised nodes as
helper nodes.

The e�ort of each method can be composed from cost-values for the basic
actions: Compromising one small node (cost= 1), compromising one large
node (cost= A) and waiting for an event (cost= e). The parameters A and eA

e can be adjusted to re�ect the situation in the real deployment scenario. For
example, A can be increased if large nodes are not easily accessible.

Figure 4.3 illustrates how these actions lead to a degenerated report. We
can now model the e�ort that an attacker has to make:

De�nition: 4.1 Let eff(g,N) be the minimal e�ort to create a degenerated re-eff(g,N)
port with g false SMAC-components, based on compromising a set N of sensor
nodes. N can be either {TN R}, GR or GR. In �gure 4.3, the value of eff(g,N)
is the length the shortest path from �start� to �end� via node N .
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Based on this de�nition, eff(g,N) resolves to:

eff(g,GR) = g + e (4.18)

eff(g,GR) = A + T − g (4.19)

eff(g, {TN R}) = A + min(e, T − g) (4.20)

In order to give high scores to nodes that are involved in a sequence of actions
with low e�ort, we de�ne a score increment score+

N(g) for N ∈ {TN R,GR,GR}: score+
N (g)

score+
a (g) =

1

eff(g,GR)
=

1

g + e
∀a ∈ GR (4.21)

score+
b (g) =

1

eff(g,GR)
=

1

A + T − g
∀b ∈ GR (4.22)

score+
A(g) =

1

eff(g, {TN R})
=

1

A + min(e, T − g)
for A = TN R(4.23)

The score of a node can then be computed as the sum of score+(g) over all
evidences ER. A node a is removed from the network if

scorea > scoremax (4.24)

The threshold scoremax should be adjusted such that at least two evidences
are necessary for a node to be removed from the network.
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Chapter 5

Implementation

In order to evaluate the scheme presented in chapter 4, we have performed
simulations on a sensor network simulator.

Various sensor network simulators already exist, so we �rst attempted to
implement the simulation on an existing platform. Section 5.1 describes the
process of deciding which platform to use.

Section 5.2 gives details about the implementation of our own simulator.
Section 5.3 describes the implementation of HEFS in the simulator. Chap-
ter 5.4 describes the protocol that is compared to HEFS in the evaluation.
Finally, section 5.5 presents the con�gurations that were used to gather the
statistical results presented in the evaluation.

5.1 Platform decision process

A number of assumptions and required components were de�ned in chapter 4.
Some of these prerequisites and assumptions must be re�ected in the simula-
tion while others are only relevant in a real deployment scenario. For exam-
ple, LEAP provides authenticity and data con�dentiality between neighboring
nodes, and the µTESLA protocol allows authenticated broadcasts. For the
evaluation of HEFS, it is adequate to simulate the overhead caused by these
protocols, but it is not necessary to simulate the protocol in detail. It is eas-
ier to modify the attacker's behavior to not attempt attacks that would be
prevented by LEAP or µTESLA.

This section highlights the guidelines that were used in the platform deci-
sion process and brie�y evaluates two simulation platforms according to these
guidelines.

Heterogeneous network The assumed network structure in chapter 4 con-
tains di�erent types of sensor nodes. Such a network structure must be sup-
ported by the simulator:

1. Sensor nodes must be able to have di�erent properties concerning the
battery model, the radio model, CPU resources and memory.

2. Sensor nodes must be able to run di�erent applications.
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The second item is particularly important because it would be impossible to
implement di�erent functions for small nodes and large nodes otherwise.

Routing protocols HEFS uses two di�erent routing protocols with special
properties:

• The sink routing protocol (SRP) performs a routing towards the sink.
It prefers large nodes for routing and uses their larger radio transmission
range to create shortcut paths.

• The transition routing protocol (TRP) performs a routing from a
small node towards the L nearest large nodes.

A basic implementation of these protocols is needed for the evaluation of the
scheme, but it is not necessary to use a sophisticated protocol. Simulated
nodes do not fail and we assume that compromised nodes do not attempt to
perform black hole or selective forwarding attacks.

Crytpographic operations Cryptographic operations are used when mes-
sage authentication codes (MAC) and public-key signatures are attached to
reports and veri�ed. Attacks on the cryptographic algorithms are not the pri-
mary focus of this thesis, so the actual algorithms are not important. Even so,
it is important that false MACs are not accidently accepted. For this goal, it is
bene�cial to use real MAC algorithms. Since the implementation of MAC al-
gorithms is not the primary goal of this thesis, the existence of a cryptographic
library is a requirement.

The algorithm for public-key signatures can be replaced by a dummy algo-
rithm. The algorithms presented in section 3.4.2 are relatively new, so there
are no implementations in standard cryptographic libraries. Using existing
algorithms with a larger signature length would distort the statistical results.
As a work-around we use symmetric algorithms instead and let the simulated
attacker behave as if they were asymmetric. The signature can then be padded
to the length of the public-key signature proposed for the scheme.

Gathering statistics The goal of the simulation is to collect data about the
number of transmitted bytes and messages and about the energy consumption
of sensor nodes. The simulation platform must provide mechanisms to collect
these data.

Development tools Implementing the simulation is only one of the goals
of this thesis. In order to reduce the time spent on this goal, the quality of
the development and debugging tools is relevant for deciding which simlution
platform to use.
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Advantages of existing frameworks An alternative to using an existing
platform is writing a new simluation framework from scratch. In this case all
features can be implemented speci�cly for HEFS. It is important to point out
the advantages of using an existing framework:

• Reuse of code: A simulation framework already provides a code base
for simulations. Physical-layer and link-layer protocols may already be
available as well as other general mechanisms. This may shorten the
time needed for development.

• Comparability and credibility: Simulations generally do not model
every aspect of reality. In order to implement a simulation framework,
decision have to be made about what is exactly simulated and what
is not. By using an existing, commonly known framework, it is clear
to the reader, which decisions have been made. It is also clear, that the
�reduced reality� of the simulation has not been adapted to the simulated
protocol. Finally, the simulation results of di�erent protocols are more
comparable if both simulations have been run in the same framework.

5.1.1 Evaluated Frameworks

Two simulation frameworks were considered for the implementation of HEFS.

JSim JSim [30] is a simulation framework developed at the the Distributed
Realtime Computing Laboratory [3] of the Ohio State University. It is writ-
ten in Java and o�ers a component-based framework for di�erent kinds of
simulations. The sensor network extension provides implementations of the
lower networking layer protocols (Physical layer, Link layer) based on the
IEEE802.11 standard and the routing protocols Ad-hoc On-demand Distance
Vector Routing (AODV) [25] and Dynamic Source Routing (DSR) [19]. An
energy model for batteries and power line is included. Mobile sensor nodes
are supported and real sensor nodes can be attached in to a running realtime
simulation.

We did not implement HEFS in JSIM for the following reasons: AODV and
DSR are routing protocols for Mobile Ad-Hoc Networks. They are optimized to
handle frequent changes in the routing table caused by the movement of mobile
nodes, which is out of scope of this thesis. On the other hand, no distinction
is made between di�erent node types. This means that these protocols cannot
be used for the sink routing protocol without adaption.

Furthermore, a complete simulation of all network layers according to the
IEEE802.11 standard is unnecessary in our evaluation scenario. We presumed
that implementing the scheme in JSim would take considerably longer than
implementing a new simulation platform.

TOSSIM The TOSSIM [22] framework is a part of the TinyOS [18] distribu-
tion. Its goal is to test real TinyOS applications in a simulated environment.
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Figure 5.1: Overview over the implementation of the simulator

TinyOS applications are written in the component-based programming lan-
guage nesc [15]. Components for two basic routing protocols (Dissemination
and Collection) are available, but they do not have the properties needed for
a heterogeneous network. The radio layer must be pre-computed and a con-
nectivity graph is given to the simulator at the beginning of the simulation.

TOSSIM does not support multiple sensor node applications in one sim-
ulation, which makes it unsuitable for modelling a heterogeneous network.
Another point against choosing TOSSIM was the lack of development tools.
Implementing the scheme in nesc would have taken longer than intended.

5.2 The simulator

Due to these problems, we decided to implement a new simulation framework in
Java. Section 5.2.1 describes the implementation of the simulation framework.
Section 5.2.2 presents details of the prerequisite protocols.

5.2.1 The simulation framework

Figure 5.1 provides an overview over the components used in the simulation.
The Simulator box represents the Simulator object that runs one simulation.
Gray boxes are objects that are directly referenced by the Simulator. Solid
lines denote connections between the components of the scenario model. The
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Figure 5.2: Node components and wires of a small node.

labels 1:1, 1:n and n:m denote one-to-one, one-to-many and many-to-many re-
lations respectively. Dotted lines show function calls, and dashed lines indicate
class-inheritance. The parts of this �gure are presented in detail below.

Sensor nodes and node components Node components are the lowest ab-
straction level of the simulation framework. A component encapsulates certain
functions of the sensor node. Each component is implemented in a subclass of
NodeComponent and can be connected to other components. The connection is
called a wire and is realized through instance variables that match the patternwire

*Wire. Figure 5.2 shows the components and the wiring of a small node in a
heterogeneous network. There are implicit wires from the RadioUnit to the
components marked as gray boxes. These wires have been omitted for the sake
of the clarity. The TimerComponent has been ommitted for the same purpose.
The false message injector (FMI) is optional and can be connected either to
the sink_router or to the transition_router.

Note that all components are software components. The concept of TinyOS
and nesc de�nes a software architecture that is similar to the composition of
hardware-chips (i.e. components and subcomponents that are connected by
wires). We use this concept in our own simulator.

Creation of sensor nodes Di�erent types of sensor nodes can be created
by composing di�erent components. This creation process is performed by
a node factory (i.e. SmallNodeFactory, LargeNodeFactory, SinkFactory)node factory

using the following steps:
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AbstractSensorNodeFactory

SinkFactory SmallNodeFactory LargeNodeFactory HomogeneousNodeFactory

AttackingSmallNodeFactory AttackingLargeNodeFactory AttackingHomogeneousNodeFactory

Figure 5.3: Class hierarchy of the node factories.

Field: destination type payload

bytes: 2 bytes 1 byte

Figure 5.4: Basic message structure of all radio messages

1. Create a SensorNode object.

2. Create all node components and add them to the SensorNode

3. Connect the wires of each component to the appropriate target compo-
nents.

4. Verify that all wires of all components are connected.

Part of the wiring is done automatically by the SensorNode class: Components,
that implement the Java interface MessageHandler or MessageSnooper are
automatically wired to the radio unit. In �gure 5.2 these components are
shown in gray boxes.

Figure 5.3 shows the inheritance structure of the implemented factories.
The classes LargeNodeFactory and SmallNodeFactory are used in the hetero-
geneous network. The HomogeneousNodeFactory creates nodes for the com-
parative protocol (see section 5.4). The Attacking* factories add a false mes- false message

injector, FMIsage injector (FMI) component to the nodes. This unit is used by the attacker
to perform pDoS-attacks.

Radio model The radio model of the simulation is a graph of RadioNode
objects. Each RadioNode represents �the air around a sensor node�. The
RadioNode is connected to the radio unit of the sensor node and to RadioNodes
that are in radio range (see �gure 5.5).

Messages that are sent over the radio model inherit the abstract class Mes-
sage, which de�nes the basic structure of the message header (see �gure 5.4).

The �rst �eld (destination) is either the ID of the destination node or
the broadcast address (DEST_BROADCAST = -1). The second �eld (type) is the
message type. It determines the structure and size of the message.

In order to simulate the message overhead caused by LEAP (see sec-
tion 3.1.1), we add 8 byte to every message to represent the attached message
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Figure 5.5: Topology network of RadioNodes

authentication code. Every message must also contain the ID of the sending
node because the receiving node must be able to choose the correct MAC-key
for the veri�cation.

The following example illustrates the process of sending a message: We
assume that in �gure 5.5, node 4 has just received a message from node 6
which should be routed to node 1. For this purpose, the routing component
(e.g. "transition_router") creates a new message with the payload of the
received message and sends it to node 2 as the next hop. Node 4 now performs
the following steps:

1. The routing component creates the new message object of the correct
type and sets 2 as destination address.

2. It passes the message to the radio unit through the radioUnitWire (see
�gure 5.2).

3. The radio unit performs some additional action according to the link-
layer protocol presented in section 5.2.2. It then passes the message to
the connected RadioNode.

4. The RadioNode noti�es the adjacent RadioNode objects (2, 3, 5, 6) of
the beginning of the transmission. Each of the receiving nodes increases
a counter of pending transmissions. If other transmissions are already
going on, all transmissions are discarded and the receiving radio units
are noti�ed of the collision.

5. The sending RadioNode posts a scheduler event that is executed when
the message transmission is over. The time of this event is determined
from the message size.
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6. When the event is executed, the sending RadioNode noti�es the adjacent
nodes of the end of the transmission and delivers the message object. The
receiving RadioNode objects decrease their counter of pending transmis-
sions and pass the message to the radio unit of the connected sensor node
as long as no collision has taken place.

7. The radio unit of each receiving node determines whether it is the in-
tended recipient of the message and delivers the message to the appro-
priate node components.

Node components that process incoming messages must implement either
the interface MessageHandler or MessageSnooper. The implemented method
handledType() returns the message type that can be handled by this com-
ponent. The radio unit maintains a table that links the message type to the
appropriate node component. A MessageSnooper receives all messages of its
speci�ed type. A MessageHandler receives a message only if the node ID
matches the destination address or the destination address is the broadcast
address.

In order to simulate transmissions with di�erent ranges (for large nodes
and small nodes), each sensor can send data either in a normal transmission
mode or in a boost mode. The boost range of a node can be di�erent from
the radio transmission range. The sink routing protocol expects large nodes
to have twice the transmission range of small nodes if is is sending in boost
mode1.

The connections of the radio topology are loaded from a de�nition �le (see
appendic C) and not computed during the simulation. As a result, mobile
sensor nodes cannot be simulated with this framework.

Sensor model The developed scheme makes the assumption that sensor
nodes are able to verify the measurements of nearby nodes. This assump-
tion must be re�ected in the simulated sensor model. In the �rst approach, a
simpli�ed forest-�re scenario was implemented. The sensor component (Heat-
SensorUnit) measures the temperature at the current location.

In order to seperate the sensor model from the sensor component, a Heat-

Node is attached to the HeatSensorUnit of each sensor node. When the sensor
unit performs a measurement, it queries the HeatNode, which in turn asks the
HeatModel to compute the temperature for its location. The HeatModel can
be turned o� and on by scheduler events. The HeatSensorUnit periodically
measures the temperature and compares it to a threshold value. If the tem-
perature is too high, it uses its eventHandlerWire (see �gure 5.2) to invoke
the creation of a report.

The temperature for a given location is computed from an ambient heat ambient heat
value, heat0value heat0, a decrement factor dec and a number of heat sources
decrement
factor, dec

heat sources

si = (xi, yi, heat i) (5.1)

1It is possible to adapt the sink routing protocol (SRP) to a di�erent boost range, but
in the current implementation, we use a boost range that is twice the normal range.
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Figure 5.6: Structure of the sensor model

where (xi, yi) is the location and heat i is the temperature of the source si.
The temperature ti(x, y) that si causes at the location (x, y) depends on theti(x, y)
distance to the source:

ti(x, y) = max(0, heat i − dec ·
√

(x− xi)2 + (y − yi)2) (5.2)

Given the heat sources s1, s2, . . . , sn, the �nal temperature t(x, y) at location
(x, y) is de�ned as

t(x, y) = heat0 + max {ti(x, y) , i ∈ {1 . . . n}} (5.3)

When the sensor unit is asked to verify a measurement (as helper node) that
has occured at a location (x, y), it �rst computes the distance to this location.
If the distance is below a prede�ned veri�cation distance Vd and the currentveri�cation

distance, Vd temperature is above the critical threshold, it returns a positive result.
This model can be used in collaboration with a visualization tool to verify

the correctness of the simulation. The problem however is that it is not possible
to specify the exact number of reports that are created and injected into the
network. In simulations, where the goal is to determine the impact of injected
false messages onto the total number of transmitted bytes, it is necessary to
specify the exact number of valid and false injected message. For this purpose,
we have implemented a second model, the BurnRomeHeatModel:

In this model the temperature at any location is higher than the threshold
value all the time. The sensor units are not performing periodic measurements,
but they are activated at the beginning of a simulation phase (HeatEvent-
Phase). For every activation, a single report is generated.

Scheduler and simulation phases The central entity of a simulation run is
the scheduler. It maintains an event queue of events such as �message receivedscheduler

by node�, �timer �red in a node component� sorted by the event's time. The
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event time is speci�ed in an abstract time unit, the simulation cycle. The simulation cycle

simulator repeatedly takes the �rst event out of the scheduler's event queue,
sets the appropriate simulation time and then runs the event. The execution
causes further events to be posted to the schedulers queue.

The simulation is run in a single thread. Each event is processed without
preemption and within a single simulation cycle. In the current implementa-
tion, events are only posted when a node component waits for a number of
simulation cycles (e.g. a TimerComponent) or when a message is transmitted.
It would be more precise to also post events that simulate the delay caused
by expensive computations, but this would slow down the simulator and make
the program more complex. We make the simpli�cation, that all computations
are performed instantly in order to increase the simulation speed.

A simulation is divided into a sequence of simulation phases. Each phase simulation
phaseis de�ned by an initial action and a condidition to determine its end. The

simulator veri�es the condition after each execution of an event. A new phase
is started, when the condition is true or when the scheduler's event queue is
empty. In most cases the condition is of the form: �No message of type X has
been sent during the last Y simulation cycles�. Some examples of simulation
phases are shown in table 5.1.

Phase-Type Initial stimulus Finalization condition

SinkRoute-

FinderPhase

The sink starts a route-�nding
broadcast

No broadcast messages have
been sent for X simulation cycles

HeatEvent-

Phase

A heat sensor is activated and
measures a critical temperature

No routed message with the
target �sink� has been sent for X
simulation cycles

PDoSAttack-

Phase

The attacker injects a false
message into the network

No routed message with the
target �sink� has been sent for X
simulation cycles

Table 5.1: Examples of simulation phases

Gathering statistics The main goal of the simulations is gathering statis-
tics about transmitted messages. The foundation of these statistics is the
message counting component GlobalMessageStatistics. One instance of
this class is attached to all radio units in the simulation. When a message is
transmitted, the radio unit calls the method messageSent(Message) of the
GlobalMessageStatistics instance, which increases the counter of transmit-
ted messages and bytes for the appropriate message type. As a secondary
task, this class keeps track of the time of the last transmission of each mes-
sage type. This information is needed to verify the �nalization condition of
simulation phases. Similarly a method messageReceived(Message) is called
every time a radio unit delivers a message to a MessageHandler-component.
In the end, the transmitted and received bytes are merged into the total energy
consumption of all radio units using the values from table 1.1.

For the computation of statistics, the GlobalMessageStatistics instance
maintains a history of message counters. The current counter is increased by
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the messageSent(Message) and messageReceived(Message) method. The
nextLog() method can be called during the simulation to save the counter
and initialize a new one. This is usually done in a dedicated simulation
phase (NextLogPhase) which can be con�gured to discard or store the current
counter. From the set of counters, the class can then compute the minimum,
the maximum, the median, the average (mean) and the standard deviation.

These statistics are stored in a record and archived as well. The statistic
records of multiple simulation runs are then merged into the �nal results. The
merging is done by taking the average values of the set of statistic records.

Batch con�gurations The package org.knappi.wsn.sim.batch contains
batch con�gurations. These classes provide the initial main(String[] args)batch

con�gurations methods that run di�erent simulations. The classes in this package have to
following purpose:

1. They build a simulation with a speci�c con�guration.

2. They run multiple simulations and write statistical results into a �le.

The �rst task consists of

1. specifying the data directory from which layout and radio-topology in-
formation is read,

2. specifying a heat model,

3. creating instances of node factories and passing them to the simulator,

4. adding simulation phases to the simulator, and

5. calling the init() method of the simulator. This last step uses the
factories and the information from the data �les to create the sensor
nodes of the scenario. It also connects the sensor nodes to the radio
model and the sensor model.

The abstract class AbstractBatchConfiguration provides functionality to
run a given task on multiple data directories. Its subclass AbstractStatis-
ticConfiguration adds functionality to collect statistical data beyond the
scope of one simulation run and writes the output to a GNUplot-readable �le.
Batch con�gurations usually inherit one of these classes.

5.2.2 Implementation of required protocols

In order to simulate HEFS, a link-layer protocol and two routing protocols had
to be implemented.
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Figure 5.7: Hidden terminal problem

Medium Access Control The link-layer protocol is implemented in the
radio unit. It uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) to organize the message transfer [11]:

In wired networks, a participant can listen at the bus while sending data.
That way, it can detect message collisions. In wireless networks, the trans-
mitted signal is much stronger than signals received from other locations, so
a listen-while-send is not possible. CSMA/CA proposes a listen-before-send:
Before sending a message, the sensor node listens to the wireless channel. If
the channel is free, it stops listening and starts sending. If the channel is busy,
it waits for a random period of time before attempting to send again. The
upper boundary for the random number is increased exponentially after each
attempt. In the simulation, the �listening� to the channel occurs in no time
and there is no gap between �listening� and �sending�. Nonetheless, collisions
can occur in the case of a hidden terminal problem, which is illustrated in
�gure 5.7: If the nodes 1 and 7 transmit a message at the same time, both
messages collide at the nodes 6 and 9. These nodes cannot receive any of the
messages while 1 and 7 are not able to detect the collision.

This problem could be solved by sending an ACK message back to the
sender once the sending is complete. We decided not to implement such a
solution because

1. it would make the protocol signi�cantly more complex,

2. the sending of ACK messages requires an expensive message transmis-
sion, and

3. message collisions generally occur only in certain high level protocols.
These protocols can deal with the problem in a more �exible way than
the link layer protocol.

Message routing and payload data In di�erent scenarios, di�erent pay-
load data needs to be transmitted while the same routing protocol is used
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Figure 5.8: Relation of routing component, routing table and message source

to forward data. For example, the payload data of HEFS includes multiple
Message Authentication Codes (MAC) and a public-key signature (see sec-
tion 5.3). The comparative scenario of a homogeneous network only includes
a single MAC and no public-key signature (see section 5.4). Yet, the same
routing protocol is used for both messages. In order to enable code-reuse in
the simulation, the payload data has been separated from the routing data.

In the design of the simulated routing components, the payload is spec-
i�ed by the component that injects messages into the router (i.e. the Mes-

sageSource) while the message type is declared in the implementation of the
RoutingTable. Figure 5.8 illustrates the interaction of RoutingTable, Gener-
icRoutingComponent and MessageSource during the initialization and during
the message injection.

Sink routing protocol One of the two implemented RoutingTable com-
ponents is the sink route �nder. This protocol uses a gradient based approach
to forward messages from any node in the network to the sink: During the
SinkRouteFinderPhase, the sink �oods the network with a broadcast mes-
sage that contains a hop-counter and the one-hop sender-address. Each node
re-broadcasts this package and updates its routing table.

In order to support the requirement that large nodes be able to use their
extended radio range, the protocol is modi�ed to transmit not only the node
ID of the sending node, but also a list of nodes that have re-transmitted this
message before. The structure of this message is displayed in �gure 5.9. The
�eld lasthops[0] is the sender of the message, lasthops[1] the previous
sender and so on.

The routing table consists of the following �elds:

• my.hops: This �eld contains the number of hops to the sink.

• my.nexthops[]: This array contains the IDs of the next hops on the
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route. nexthops[0] is the ID current node, nexthops[1] the next hop,
and so on.

In the simulations, the extended range of large nodes is twice the normal range
of small nodes. Still, the broadcast messages are transmitted with the normal
range only.

When a small node receives a broadcast message msg it updates the routing
table and re-broadcast the message as shown in algorithm 5.1.

Algorithm 5.1: SRP routing table update on small nodes

if msg.counter < my.hops then
my.hops = msg.counter + 1;
for i=0 to msg.nexthops.length-1 do

my.nexthops[i+1] = msg.lasthops[i];
end
my.nexthops[0]= my.nodeId;
newMsg = new BroadcastMessage();
newMsg.lasthops = my.nexthops;
newMsg.counter = my.hops;
send(newMsg);

end

The behavior of a large node receiving the broadcast depends on whether
the last hop (lasthop[0]) is a small node or a large nodes. If the last hop
was a small node and the boost-range for large nodes is twice the normal radio
range then this node can be omitted in the routing (see algorithm 5.2).

Since the counters transmitted by large nodes are generally smaller than
counters transmitted by small nodes, the route is more likely to use a large
node. Figure 5.10 displays the route of a message originating in node 14. On
the left side, large nodes are treated as small nodes. The route from node 14
does not use any large node as forwarding node. On the right side large nodes
are used as described above and use their extended range. This protocol uses
the large nodes 1 and 4 as forwarding nodes.

.

Transition routing protocol The second routing protocol is used to route
messages from the cluster head to the transition node. The route establishment
happens in combination with the creation of LE-Keys as described in section
4.4. The structure of this broadcast message is shown in �gure 5.11.

This routing protocol is only implemented on small nodes. The processing
of the message is similar to the sink routing protocol: All counters are increased

Field: dest type counter lasthops[0 . . . (x− 1)]
bytes: 2 1 2 bytes 2 · x bytes

Figure 5.9: Structure of a AbstractSinkRouteFinder broadcast message



48 CHAPTER 5. IMPLEMENTATION

Algorithm 5.2: SPR routing table update on large nodes

if msg.counter < my.hops then
if msg.lasthops[0] is a large node then

my.hops = msg.counter;
for i=0 to msg.lasthops.length-1 do

my.nexthops[i+1] = msg.lasthops[i];
end

else
my.hops = msg.counter - 1;
for i=0 to msg.lasthops.length do

my.nexthops[i] = msg.lasthops[i];
end

end
my.nexthops[0]= my.nodeId;
newMsg = new BroadcastMessage();
newMsg.lasthops = my.nexthops;
newMsg.counter = my.hops;
send(newMsg);

end

before the update. The routes are updated for the shortest L large nodes
encountered so far. If the routing table has changed, the new table is re-
broadcasted.

Both protocols are rather fragile concerning node failures. Backup routes
are not stored. If a node fails, the complete sub-tree that has this node as root
is cut o� from the sink (or the transition node). In a real deployment scenario,
these protocols would have to be more sophisticated, but this topic is beyond
the scope of this thesis.

5.3 Implementation of HEFS

The classes for the local cooperative report generation are found in the pack-
age org.knappi.wsn.sim.nodecomponents.coop. The component consist of
�ve subcomponents that are managed and encapsulated by the LocalCoop-

erationComponent. Each of the subcomponents represents one state of the
generation protocol from section 4.5. The components are enumerated by the
order, in which they are activated. Components that are active when the node
is in cluster-head mode have odd numbers. Helper node components have even
numbers. A cluster manager can be attached to the LocalCooperationCom-

ponent in order to implement di�erent clustering behaviors.

Clustering algorithm A trivial clustering algorithm has been implemented
in the class AdHocClusterManager: The �rst node that attempts to become
cluster head is elected. When a sensor event occurs, every node waits a random
period of time. Two possibilities can occur then:
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Figure 5.10: Routing path of a message from node 14 to the sink and a router
without (left) and with (right) preference of large nodes

Field: dest type sender id[0 . . . (L− 1)] counter[0 . . . (L− 1)]
bytes: 2 1 2 bytes 2 · L bytes 2 · L bytes

Figure 5.11: Structure of a AbstractSinkRouteFinder broadcast message

1. The waiting period �nishes before anything else happens: Then the node
switches to cluster-head mode and sends a COOP1StimulusMessage to the
neighboring nodes.

2. A COOP1StimulusMessage message is received before the waiting period
is �nished. In this case, the node switches to helper-node mode and
ignores the end of the waiting period.

The cluster manager maintains the current mode of operation, which can be:
unde�ned, cluster-head, helper-node. The report-generation components can
ask the cluster manager to switch the mode and the cluster manager can
approve or refuse the request. The AdHocClusterManager always approves
the request if it is in an unde�ned state or if it is already in the requested
state, but other implementations are possible, too.

The state of the report generation process is kept in the cluster head, while
the helper nodes are stateless. This fact is re�ected in the cluster manager:
The helper-node mode is automatically reset to the unde�ned mode after a
speci�ed waiting period, but the cluster-head mode must be explicitely reset
by the generation component.
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COOP1StimulusMessage

Field: dest type sender n blacklist heat x y time

bytes: 2 1 2 1 2 · n 2 2 2 4

COOP3CollectedSMACMessage

Field: dest type sender SMAC clusterIDs transitionNode

bytes: 2 1 2 12 2 · T 2

TransitionRouteMsg LocalAuthenticatedPayload

Field: dest type sender trans.Node SMAC LMAC clusterIDs heat,x,y,time

bytes: 2 1 2 2 12 8 2 · T 10

Figure 5.12: State transitions and message structures of the report generation
component, when in cluster-head mode

Localization and key creation The key generation is done by the Ab-

stractKeyStorage class and its subclasses as described in section 4.4: The
deployment area of the network is divided into cells. Locations are speci�ed
by an (x, y)-pair, where x and y are 2-byte values. The cell of a location (x, y)
is computed as

cellx(x, y) =
⌊ x

C

⌋
(5.4)

celly(x, y) =
⌊ y

C

⌋
(5.5)

where C is the pre-de�ned cell size. Each small node computes LE-Keys and
LBI-Keys for each cell which lies within its veri�cation distance Vd.

Each large nodes computes and stores K init
A as described in chapter 4.4.

Local generation Figure 5.12 gives an overview over the interaction be-
tween the cluster-head components and the structure of the sent messages.
The optimal sequence of actions of the cluster head is:

1. Switch to cluster-head mode.

2. Send COOP1StimulusMessage to neighboring nodes.
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COOP2SMACPartMessage (helper node)
Field: dest type sender transitionNodes smacPart

bytes: 2 1 2 2 · L 8

COOP4LMACPartMessage (helper node)
Field: dest type sender lmacPart

bytes: 2 1 2 8

Figure 5.13: State transitions and message structures of the report generation
component, when in helper-node mode

3. Wait and collect COOP2SMACPartMessages from neighboring nodes.

4. Choose a transition node and helper nodes, compute the SMAC and
send COOP3CollectedSMACMessage to the helpers (speci�ed in the clus-
terIDs �eld).

5. Wait and collect COOP4LMACPartMessages from helpers.

6. Compute LMAC and send a TransitionRouteMsg with a LocalAuthen-
ticatedPayload to the transition node.

7. Reset the cluster manager.

In the simulation, this sequence may be disturbed by message collisions: If the
cluster head does not receive enough answers in the steps 3 and 5, it cannot pro-
ceed with the next action. Instead, it has to resend the previous message and
collect the answers again. The blacklist �eld in the COOP1StimulusMesage
reduces the probability of collisions after resending the message. It contains
a list of all node IDs of which an answer has already been received. Black-
listed helpers do not send a reply to the message anymore. Similarly, nodes
are blacklisted in step 5 by removing their ID from the clusterIDs �eld.
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Figure 5.13 presents an overview over the component interaction, when
the node is acting as helper node. In the �rst implementation of the report-
generation component, the helper-node mode had a similar structure as the
cluster-head mode: When a COOP1StimulusMessage was received, the helper-
node mode was activated. After sending the COOP2SMACPartMessage the com-
ponent awaited the COOP3CollectedSMACMessagemessage from the same clus-
ter head. Finally, after sending the COOP4LMACPartMessage, the cluster man-
ager was reset to an unde�ned mode again. This behavior caused a number of
problems:

• Every helper node was able to support only one cluster head. When an
event was generated on a larger area, the cluster heads began competing
for helpers. The worst e�ect of this �aw was the following: A cluster
head a at the border of the event could not �le a report because not
enough helpers could con�rm the measurement. Another cluster head b

was unable to create a report because a had sent its broadcast message
�rst, thereby binding some potential helper nodes. In this case, no report
was �led at all.

• Helper nodes could not answer to repeated broadcasts because when
the broadcast (COOP1StimulusMessage or COOP3CollectedSMACMes-

sage) had been sent for the second time, the state transition had already
taken place.

• Some helper nodes did not reset their cluster managers because they
never received the COOP3CollectedSMACMessage. The e�ect was that
those nodes were essentially lost for the network. They could not become
cluster head by themselves and did not answer to COOP1StimulusMes-

sages anymore.

• When a helper node returned to the unde�ned state before the initial
waiting period was over, it became a cluster head and �led a new report
for the same event. As a result more reports than necessary were sent.

In order to resolve these problems, the state transitions have been removed.
In the current implementation, the cluster manager is switched to helper-node
mode when a COOP2SMACPartMessage or COOP4LMACPartMessage is received
and it switches back to unde�ned automatically after a de�ned waiting time.
Both helper-mode components can be active independently of each other, but
the COOP4LMACUnit only answers to the cluster head, for which SMAC-part
has been stored before.

Multiple SMAC-parts can be stored, so that multiple cluster heads can be
served at the same time. The waiting period before the reset prevents the
helper node from acting as cluster head for the same event and ensures that
no helper node gets stuck in its role as helper.
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Figure 5.14: Node components and wires of a large node. The TimerComponent
has been ommitted for the sake of the clarity.

SinkRouteMsg PKSigPayload

dest type sender trans.Node SMAC signature clusterIDs heat,x,y,time

2 1 2 2 12 32 2 · T 10

Figure 5.15: Structure of a SinkRouteMsg with PKSigPayload

Transition and the public-key signature The components and wires of
a large node are illustrated in �gure 5.14. When a LocalAuthenticatedPay-

load reaches the transition node, it is handled by the TransitionComponent.
This component asks the key storage component to generate the LE-keys for all
attached IDs and the cell of the location speci�ed in the report. After verifying
all MACs, it creates its �spublic-key signature� for the report. In section 5.1,
we have explained that the implementation of a real public-key algorithm is
not necessary in the simulation. Instead, the �public-key signature� is a MAC,
that is computed with the transition node's ID as key. The remaining part
of the signature is padded with zeros up to a length of PK_SIG_LENGTH = 32

bytes (256 bits). After computing the signature, the transition node sends a
SinkRouteMsg with a PKSigPayload (see �gure 5.15).

Note that SinkRouteMsg does not de�ne an extra target-�eld on top of the
default header because there is only one possible target destination (i.e. the
sink) for this message type.

Veri�cation In small nodes, the class GenericRoutingComponent is respon-
sible for forwarding messages in both protocols. Large nodes use the subclass
ConditionalRoutingComponent for the SRP. This component has an addi-
tional wire, the conditionWire. Before routing a message, it calls the veri-
fyCondition(payload)-method of the conditionWire. The message is only
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sink_finder_root

radioradioUnitWire

timer

timerWire

Figure 5.16: Components and wires of the sink.

forwarded if the return value is true. The conditionWire is connected to
the TransitionComponent which performs the veri�cation of the payload's
signature.

We have omitted the veri�cation at the sink and the long-term analysis.
In the simulation, we assume that an attacker does not forge the public-key
signature, even if he compromises a large node. The long-term analysis is
evaluated theoretically in chapter 6. That is why the implementation of the
sink only consists of three components (see �gure 5.16). The sink initiates the
broadcast that initializes the sink routing protocol. Other functions have been
omitted.

5.4 Comparative protocol

The goal of the simulation is to compare the performance of HEFS to the
perfomance of an �ordinary� sensor network. This section describes the imple-
mentation of the �ordinary� protocol.

The ordinary sensor network is a homogeneous network. Network layout
and the radio topology are loaded from the same �les as in the en-route �ltering
simulation, but the factories for both large and small nodes are of the type
HomogeneousNodeFactory. This means that only one node type is generated
(except from the sink). The components and wiring of this node type are
displayed in �gure 5.17.

The protocol assumes a cluster based report generation but does not sim-
ulate the communication in detail. Instead, when a sensor node measures a
critical temperature, it sends a message directly to the sink. The structure of
this message is shown in �gure 5.18.

The clusterIDs �eld contains the least-signi�cant byte of the ID of the
node that created the report and is padded with zeros to simulate the correct
length of the message. The MAC-�eld is reserved for a cluster-created MAC but
contains only zeros because the current implementation does not perform a
sink veri�cation. We also assume, as in all messages that an additional 64-bit
MAC is attached by the LEAP-framework. The sender �eld is the ID of the
last sender which is needed by LEAP.

If we assume that the cluster uses LBI-keys for the report generation, then
the protocol has the same properties as HEFS, except that it cannot �lter
reports en-route. Therefore, the protocol is an appropriate comparison when
measuring the e�ectiveness of the en-route �ltering.
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Figure 5.17: Wiring of a node in the comparative scenario.

SinkRouteMsg SimpleAuthenticatedPayload

Field: dest type sender clusterIDs MAC heat,x,y,time

bytes: 2 1 2 2 · T 8 10

Figure 5.18: Message structure of the comparative protocol

Boosted con�guration The comparison to a homogeneous network does
not respect the higher cost of a heterogeneous network. In order to compare
HEFS to a protocol that is based on the same hardware, we have implemented
the above protocol in a boosted con�guration. The HomogeneousNodeFactory boosted

con�gurationcan be con�gured to create small and large nodes. The only di�erence between
the nodes, is that

1. the energy consumption of large nodes is ignored in the simulation re-
sults, and

2. the large nodes perform algorithm 5.2 to update their routing table.

The result is a protocol that has the message structure shown in �gure 5.18,
but saves energy by using large nodes to routes message to the sink. This
protocol does not perform an en-route veri�cation.

5.5 Implemented con�gurations

Three batch con�gurations have been implemented for the statistical evalua-
tion of HEFS. The goal of the �rst con�guration is to determine a reasonable
number of large nodes. The second con�guration simulates the injection of
transition routing protocol (TRP) messages for di�erent values of L. The
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third con�guration assumes a percentage of injected tra�c and measures the
energy consumption of the network.

All con�gurations expect a set of scenario directories as input and measure
the tra�c caused by injecting messages into

1. a homogeneous network,

2. the comparative scenario in the boosted con�guration, and

3. a heterogeneous network that uses HEFS. The injection of SRP messages
and TRP messages is simulated separately. TRP messages are sent to-
wards the furthest of the L target nodes in the routing table.

Each con�guration writes the simulation results to a �le that can be read by
GNUplot. The structure of one line is equal for all con�gurations and shown in
�gure 5.19. The meaning of the �rst column is di�erent in each con�guration.

1 2 3 4 5 6 7 8 9 10 11

Hops per message µJoules per message
x min max median avg. std.Dev. min max median avg. std.Dev.

Figure 5.19: Format of the batch con�gurations' output �le

5.5.1 Number of large nodes

The AbstractPDoSBytesConfiguration expects that the input contains sce-
nario de�nitions with di�erent numbers of large nodes. It runs a simulation
with the phases displayed in algorithm 5.3 for each scenario.

At the end of each simulation statistics are computed about the number
of transmissions and the energy consumption of TRP- and SRP-messages.
Since only one message has been injected between two re-initializations of the
message counters, the result of one simulation are statistics about the number
of hops (the energy consumption) per message. This statistic record is stored
along with the number of large nodes de�ned in the scenario �le2.

In some cases, a simulation error occurs during the simulation. This may
be the case, when the sink is not in range of any node in the network. If an
error occurs, the statistic record of the simulation is probably corrupted and
therefore discarded.

If multiple records have the same number of large nodes, all of them are
saved. In the end, the average of these records is computed. The resulting
output �le has one line for each number of large nodes. The �rst column of
the output x is the number of large nodes. This �le is then used to display the
graphs in �gure 6.2.

2A homogeneous network does not contain any large nodes but the scenario �les contain
this information nevertheless.
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Algorithm 5.3: Simulation phases of the AbstractPDoSBytesConfig-

uration

run SinkRouteFinderPhase ; /* Initialize SRP */

if heterogeneous network then
/* Initialize TRP and LE- and LBI-keys. */

run TransitionRouteFinderPhase;
end
/* Discard current message counters and initialize new ones.

*/

run NextLogPhase(discard);
for i=1 to 100 do

/* Inject a false message into a random node. */

run PDoSAttackPhase;
/* Save current message counters and initialize new ones.

*/

run NextLogPhase(store);
end

5.5.2 Number of LE-Keys

The TNodesConfiguration is almost identical to the AbstractPDoSConfig-

uration. The di�erence is, that it expects scenarios to have all the same
number of large nodes. It runs all scenarios with values for

L ∈ {1, . . . , 30} (5.6)

in order to measure the impact of the L-parameter (number of transition nodes
per small node) on pDoS-attacks. We assume that the attacker injects mes-
sages towards the large node with the maximal hop count and this distance
depends on the value of L. The injection of sink routing messages is also per-
formed as a reference value, even though the L parameter should not have any
in�uence on the sink routing protocol. The output �le contains one line for
each value of L, which is the value of the �rst column. The graphs in �gure 6.4
are based on the output of this batch con�guration.

5.5.3 Ratio of injected messages

The AbstractTrafficTestConfiguration also expects scenarios with the
same number of large nodes. The sequence of simulation phases for each
simulation is described in algorithm 5.4.

We assume that an injected message causes more tra�c in the comparative
protocol than in HEFS because HEFS drops the message at the �rst large
node. On the other hand, a valid message that was created in reaction to valid message

a real sensor event causes more tra�c in HEFS: It is not �ltered and the
attached MACs and signatures make every single message bigger than in the
comparative scenario.
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Algorithm 5.4: Simulation phases of AbstractTrafficTestConfigu-
ration
run SinkRouteFinderPhase;
if heterogeneous network then

run TransitionRouteFinderPhase;
end
run(NextLogPhase(discard);
for n=0; to 50 do

reset GlobalMessageStatistics;
for i=1 to 10 do run(HeatEventPhase);
for i=1; to n do run(PDoSAttackPhase);
run NextLogPhase(store);
compute statistics;
addStats(n/10.0, stats) ; /* β = n

10
*/

/* Results are divided by 10.0 before output */

end

The goal of this con�guration is to measure the total tra�c caused for
di�erent values of

β =
f

v
(5.7)

where f is the number of injected false reports and v is the number of valid
reports. The output �le has one line for each value of β, which is written in
the �rst column of the �le. The values in columns 2 to 11 refer to the total
number of message transmissions (or the energy consumption) during one heat
event and β injected messages.
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Chapter 6

Evaluation

This chapter evaluates the hybrid en-route �ltering scheme HEFS. Section 6.1
provides a security analysis of HEFS. Section 6.2 analyzes the dependencies
between the parameters of HEFS and the security and e�ciency goals. Sec-
tion 6.3 evaluates the energy consumption of HEFS and the resilience against
pDoS-attacks. Section 6.4 evaluates the security long-term-analysis tool and
the energy consumption of injected degenerated reports. Section 6.5 analyzes
the memory overhead caused by HEFS and the underlying protocols, and sec-
tion 6.6 examines the impact of failing large nodes on the protocol.

6.1 Security analysis

HEFS was developed to reduce the impact of false data injection attacks, data
alteration attacks, and path-based denial of service attacks. A more detailed
distinction of the attacks is necessary in order to evaluate the e�ect of these at-
tacks because (a) a pDoS-attack can be started in di�erent ways and (b) there
must be a distinction between comprising large nodes and small nodes. The
section analyzes the opportunities an adversary has to attack the network.

Path-based DoS attacks Only large nodes verify the signature of SRP-
and TRP-messages. Thus an injected or altered message is forwarded until
it reaches the �rst large node on the route. A measure of the e�ciency of
HEFS is the number of hops travelled by such a message and the total energy
consumed by all radio units in the network.

The maximal hop count of an injected message depends on the number of
large nodes and is evaluated in section 6.2.4. An analysis of the overall energy
consumption is presented in section 6.3.

The impact of pDoS-attacks on the TRP is also in�uenced by the parameter
L. The TRP performs routing to the L nearest large nodes. An attacker,
who injects TRP messages, causes the largest damage by injecting a message
towards the furthest of these nodes. The impact of the L parameter is analyzed
in section 6.2.5.
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Injection of degenerated reports If an attacker has compromised a large
node and less than T small nodes, he can generate reports with a valid signature
but he cannot create a correct SMAC. Such a degenerated report remains
undetected until it reaches the sink and thus causes more tra�c than the
previously described injections. HEFS reacts by isolating compromised nodes
from the network. The impact of such an attack is analyzed in section 6.4.

Exploit weaknesses in the long term analysis The statistical analysis
tool of the sink computes a score for each node that is involved in the creation
of a degenerated report. When the score exceeds a pre-de�ned threshold, the
node is removed from the network. The rules of this tool are assumed to be
available to the attacker. After compromising a number of nodes, the attacker
can actively try to mislead the statistical analysis, thus removing innocent
nodes from the network. The e�ort and impact of such frameup attacks is
evaluated in section 6.4.

Removal of large nodes The heterogeneous routing structure of HEFS
requires that small nodes send their data to a nearby large node. After the
initialization phase, each small node maintains shared keys with L large nodes.
If all L potential transition nodes of a small node a fail or are isolated by
the sink, node a is isolated as well because a redeployment of nodes is not
intended in HEFS. The more large nodes lost, the bigger the number of small
nodes unable to participate in the creation process. In section 6.6 we analyze
the impact of the simple case that exactly L large nodes are failing.

Compromisation of L small nodes in the same region An attacker,
who compromises L small nodes in the same location (key-accuracy, see
page 28), can inject false reports under a number of conditions:

1. The location of the report must match the location of the keys that are
stored in the compromised nodes.

2. If the attacker has not compromised any large nodes, the injected mes-
sage must be sent to a transition node for which the compromised nodes
store LE-keys (i.e. a large node in the vicinity of the compromised nodes).

3. If the attacker has compromised a large node and enough small nodes
in the same location, he can use the LBI-keys of the small nodes and
the signature of the large node to inject false reports anywhere into the
network. Chapter 7 proposes a method to restrict the point of injection.

Within these limitations, the attacker can perform pDoS-attacks as well as
false data injection attacks. A purely software-based solution cannot prevent
this kind of attack. The attacker can achieve the same result by leaving the
node-application intact and injecting false stimuli into the sensor unit of the
compromised nodes.
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Figure 6.1: Dependencies between parameters and e�ciency goals. The left
column shows parameters and the gray box is assumed to be constant. The
right column contains minimization goals. Each box can be seen as a value
such as �large� or �small�. Dotted blue lines indicate that increasing the source
value causes a decrease in the target value. Solid black lines indicate that
increasing the source value causes an increase in the target value

Denial-of-service attacks En-route �ltering generally has the drawback
that the sink is not noti�ed about data alterations. Instead, a data alteration
attack has the same e�ect as a black hole attack: The altered message disap-
pears on the way to the sink. Attacks of this type are not in the scope of this
thesis.

6.2 Parameter adjustment

The e�ciency of HEFS and its resource overhead depend on a variety of ad-
justable parameters. Figure 6.1 provides an overview of the parameters and
the e�ect of parameter modi�cation. This section describes the illustrated
dependencies in detail.

Some of the dependencies have been evaluated empirically in a simulation.
In these simulations, the sensor nodes are deployed (a) in an area with the
shape of a square and (b) in an area with the shape of a prolate rectangle.
The exact parameters are shown in table 6.1.

In order to provide comparability with other en-route �ltering schemes, the
size of the unauthenticated payload data (temperature, x, y, time) has been
expanded to 24 bytes. In the statistical en-route �ltering scheme (SEF) [36] the
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prolate shape quadratic shape
area size 4000× 200 2000× 2000

radio range 50 (boost 100) 50 (boost 100)
verif.dist. 60 60

total nodes 2000 6000
large nodes 50 and 100 100 and 200

T 5 5
L 4 4

Table 6.1: Parameters used in the simulations

same size is used to evaluate the energy consumption. The size of a transition
route message is then 61 bytes (see �gure 5.12) and the size of a sink route
message is 85 bytes (see �gure 5.15)

6.2.1 Cluster size T

The parameter T de�nes how many nodes have to endorse a valid report.
Modifying the parameter has positive and negative e�ects:

1. A larger T makes the network more robust because it forces the attacker
to compromise more nodes before he can inject false messages without
being detected.

2. A larger T also bears the danger that the cluster head does not �nd
enough helper nodes to create a report.

3. A larger T increases the message size because the ID of each node has
to be transmitted in the message.

The signi�cance of this parameter cannot be evaluated in a generic simulation
and the increase of the message size is only relevant for large values of T . With
a total message size of 61 or 85 bytes, the increase of T by one causes less then
5 percent additional tra�c. For the simulation we arbitrarily set T = 5.

6.2.2 Cryptographic parameters

The size of SMAC, LMAC and the public-key signature is a modi�able parame-
ter of HEFS. A larger key size increases the security against brute-force attacks
but it also increases the message size and thus the network tra�c. In all our
evaluations we used a MAC size of 8 bytes and a bloom-�lter size (SMAC) of
12 bytes. We did not modify the parameters because neither cryptoanalytical
nor brute-force attacks are in the scope of this thesis.

As shown in section 3.4.1 there are multiple ways of distributing public
keys. The ID-based approach is the most promising for an en-route �ltering
scheme like HEFS because no public-keys have to be transmitted. The public-
key is the node ID of the transition node. This ID is already part of each sink
route message. This greatly reduces the tra�c induced on small nodes.
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In our simulations we used a signature size of 32 bytes (256 bits). Elliptic
curve signatures of this size provide a security equivalent to an 8 byte (64 bit)
MAC (see section 3.1).

6.2.3 Number of small nodes

A modi�cation of the number of deployed small nodes has several implications.
On the one hand, the hardware cost of the network increases linearly with the
number of small nodes. On the other hand, a higher node density implies that
each node has more direct neighbors, which has two consequences:

1. The memory consumption increases because LEAP needs to store more
pair-wise keys and cluster keys.

2. A low node density bears the risk that the cluster head cannot �nd
enough helper nodes to create a report. This probability decreases with
an increasing node density.

The number of LEAP keys can be limited manually in order to save memory
but that also increases the risk of not being able to �nd enough helper nodes.

6.2.4 Number of large nodes

The number of large nodes also in�uences the hardware costs and the memory
consumption caused by LEAP-keys because large nodes communicate with
small nodes.

On the other hand, the result of a high density of large node is a short
distance from any small node to the nearest large node. This reduces the
impact of pDoS-attacks on both routing protocols. Figure 6.2 shows the trav-
elled hops of an injected message in simulations with 0 to 200 large nodes (see
section 5.5). Four di�erent network con�gurations have been simulated:

1. A homogeneous network, where all large nodes are acting as homogeneous
nodes (see section 5.4).

2. A heterogeneous network that does not �lter injected messages. In this
boosted con�guration, the energy consumption of large nodes is ignored in boosted

con�gurationthe measurement. The SRP favors large nodes en-route to the sink and
large nodes use their extended radio range when transmitting messages.

3. A heterogeneous network that uses HEFS to �lter injected messages and
an attacker who injects SRP messages.

4. A heterogeneous network that uses HEFS to �lter injected messages and
an attacker who injects TRP messages.

The �gure shows that the average hop count of an injected message in a ho-
mogeneous network is h0 ≈ 47 in a prolate scenario and h0 ≈ 30 in a quadratic
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Figure 6.2: Average hops of one injected false message in the prolate scenario
(left) and in the quadratic scenario (right)

scenario without large nodes. When n large nodes are present, the hop count
of an injected sink route message can be approximated by

hSRP (n) ≈ h0

c
+ 1 ≈ h0

n+1
r

+ 1 (6.1)

if all large nodes are arranged in c columns and r rows and c > r. In the prolate
scenario, large nodes are arranged in one, two or three lines, depending on n.
In the quadratic scenario, equation 6.1 changes into

hSRP (n) ≈ h0√
n + 1

+ 1 (6.2)

because then r ≈
√

n.
The di�erence between the measured hops and the approximation formula

is caused by message injections that are not routed via the nearest large node
in direction to the sink. This happens because the SRP is primarily targetted
on minimizing the transmissions by small nodes. The route via a large node
is only used if it is no more than two hops longer than the shortest alternative
route around the large node.

The behavior of TRP messages is similar but additionally depends on the
L-parameter. This relation is discussed in the next section.

Figure 6.3 shows the total energy consumption per message injection. This
�gure respects the size of each transmitted message and the energy consumed
by sending and receiving one byte (see table 1.1). The energy consumption of
an injected message in HEFS must be signi�cantly lower than in the homoge-
neous and in the boosted scenario because the di�erence must compensate the
MAC and signature overhead of valid reports in HEFS.

Note that the number of deployed small nodes does not a�ect the hop count
of an injected message. The only relevant factors are the size and shape of the
deployment area, the radio range of the nodes, and the number of large nodes.

6.2.5 Number of LE-keys L

The L parameter de�nes how many LE-Keys are stored by each small node.
It also de�nes the number of potential transition nodes for which a node can
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Figure 6.3: Average energy consumption by one injected false message for dif-
ferent numbers of large nodes in the prolate scenario (left) and in the quadratic
scenario (right)
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Figure 6.4: Average hops of one injected TRP message for di�erent values of
L in the prolate scenario (left) and in the quadratic scenario (right)

endorse reports and the number of targets in the TRP.
Increasing the parameter has a positive e�ect on the network stability:

Small nodes have multiple potential transition nodes if some large nodes should
fail. The negative e�ects of a large L are the memory consumption (8 bytes
per LE-key) and the e�ect on the TRP: a compromised node causes the biggest
damage by sending a message to the furthest target nodes. The distance to
this node increases with an increasing L. The relation between L and the hop
count of an injected TRP message is displayed in �gure 6.4. For low L, the
average number of hops of an injected message can be approximated by

hTRP (n, L) ≈ h0 ·
L

n + 1
+ 1 (6.3)

in the prolate scenario and by

hTRP (n, L) ≈ h0 ·
√

L

n + 1
+ 1 (6.4)

in the quadratic scenario and it can be expected that for a cubic scenario the
approximation function has the form

hTRP (n, L) ≈ h0 · 3

√
L

n + 1
+ 1 (6.5)
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A

B
a b

Figure 6.5: Simpli�ed illustration of T N a and T N b for L = 7

Thus the impact of an increasing L on the hop-count is lower if the dimension
of the scenario model is higher.

For large L, we can observe a deviation of the approximation function from
the measurements. This deviation is caused by the in�uence of small nodes at
the border of the deployment area which is illustrated in �gure 6.5:

The �gure shows a simpli�ed view on a heterogeneous sensor network.
The large nodes are represented by large circles. The small nodes, with the
exception of a and b, are hidden in this �gure. The potential transition nodes
T N a and T N b are highlighted. It can been seen that the maximal distance
of a small node a to a large node X ∈ T N a is larger than the equivalent
distance for b. The reason is that b lies within a zone close to the border of
the deployment area. Transition nodes equivalent to A and B cannot be found
in the vicinity of b.

This zone grows with an increasing L. Since the simulation injects messages
into random nodes, a higher number of simulated message injections start in
a node within this zone. The approximation function assumes a small node in
the middle of the deployment area. This explains the deviation in �gure 6.4.

Consequently, an attacker causes more damage by injecting transition route
messages at the border of the deployment area.

6.2.6 Cell size and veri�cation distance

The location in key-accuracy is less exact than the location in application-
accuracy. Depending on the scenario, it might be possible to specify how
accurate a key-location is. In the simulation, the location of a key is as accurate
as the size of the cells that are used for the transformation (see page 50).

An attacker who has compromised T or more small nodes can inject false
reports from the area for which the keys are valid. A small cell size (or a high
key-accuray) means that the validity area is small.

A related parameter is the maximal veri�cation distance. Generally, a
helper node must be able to verify measurements from neighboring nodes. If
such a veri�cation is possible over a large range, it can be limited by reducing
the maximal veri�cation distance. The parameter speci�es the maximal dis-
tance between a helper node's location and the event that is to be endorsed. If
the distance is larger than the cell size, each node has to store keys for multiple
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locations. This means, that

• the memory consumption of HEFS increases.

• an attacker gains valid keys for multiple locations by compromising a
single node.

On the other hand, if the value is too small, the network is unable to form
clusters for the report generation.

In reality the parameters cell size and veri�cation distance do not need
to be simple numeric values but can be handled �exibly according to the de-
ployment scenario. For example, we can distinguish between di�erent security
levels: High-security areas might be protected against intrusion while low-
security areas are not. In this case sensor nodes in low-security areas should
not store localized keys for a high-security area, even if they are able to verify
measurements in this region.

6.3 Energy consumption of HEFS

We do not use a battery model to measure the energy consumption of HEFS,
but instead examine the most energy-consuming actions of a sensor node:

• radio transmission and reception,

• cryptographic operations.

We only evaluate the energy consumption of small nodes because we assume
that large nodes have an unlimited supply of energy.

6.3.1 Radio transmission and reception

The energy consumption caused by radio transmission and reception has been
measured with the AbstractTrafficTestConfiguration (see section 5.5).
Figure 6.6 displays the results of this simulation: The x-axis shows the nor-
malized amount of injected network tra�c β. The y-axis displays the average
energy consumption caused by the creation of one valid report and the in-
jection of β false messages. The graphs show the energy consumption of a
homogeneous network, the boosted con�guration, HEFS with the injection of
TRP messages and HEFS with the injection of SRP messages.

We can see that the energy consumption of HEFS for β = 0 is higher than
in the un�ltered scenarios but increases more slowly when β increases.

The high value for β = 0 can be explained by the larger message sizes, the
cluster-based report generation, and the fact that every message is �rst sent to
a nearby large node that does not necessarily lie near the route to the sink. In
combination with an equal hop count for valid reports, this results in a higher
total energy consumption. The slower increase for β > 0 can be explained by
the fact that an injected message travels fewer hops and thus consumes less
energy in HEFS. This can also be seen in �gure 6.3.
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Figure 6.6: Average energy consumption of one valid report and β injected
messages in the prolate scenario (left) and in the quadratic scenario (right)

Figure 6.6 also shows that the boosted con�guration consumes a sign�-
cantly smaller amount of energy than the homogeneous network. There are
two reasons for this observation:

• The extended radio range of large nodes reduces the travelled hops of a
message to the sink.

• The energy consumed by large nodes is ignored in the measurements.

Another consequence is that the energy consumption of HEFS in the prolate
scenario with 100 large nodes for β = 0 is only marginally larger than the
energy consumption of the homogeneous scenario. These observations indicate
that HEFS should not only be compared to a homogeneous network but also
to the boosted con�guration. For this comparison we de�ne the values β′

h and
β′

b:

De�nition: 6.1 In comparison with an un�ltered scenario, let β′ be the
amount of injected messages so that HEFS consumes less energy than the com-
parative scheme if and only if β > β′. Let β′

h be the value of β′ in comparisonβ′
h

with the homogeneous network and β′
b be the value of β′ in comparison withβ′

b
the boosted con�guration.

Table 6.2 shows the values β′
b and β′

h that result from di�erent simulation
scenarios. Appendix B shows the graphs that lead to these values. Table 6.2
shows that increasing the number of large nodes only reduces β′

b down to a
certain limit as long as the size of the deployment area remains equal. At some
point, β′

b even increases with the number of large nodes. The reason is, that
the e�ciency of the boosted con�guration also increases with n. If the number
of large nodes is so high that a route from any large node to the sink uses only
other large nodes then the boosted scenario performs better than HEFS for
the following reasons:

• A message, which has reached a large node, does not consume any energy
anymore thus the �ltering becomes obsolete.
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area size (nodes)
β′

b (β
′
h) h0n = 50 n = 100 n = 150 n = 200

2000× 2000 (6000) 3.1 (2.3) 2.2 (1.75) 2.0 (1.0) 2.0 (0.75) 30
2000× 200 (1000) 4.0 (0.8) � 5 (0.0) � 5 (<0) � 5 (<0) 23
4000× 200 (2000) 1.6 (0.7) 2.0 (0.2) � 5 (<0) � 5 (<0) 46
6000× 200 (3000) 1.3 (0.7) 1.5 (0.1) 1.5 (0.0) 2.5 (<0) 71
8000× 200 (4000) 1.1 (0.7) 1.1 (0.3) 1.2 (0.0) 1.4 (<0) 88
n = number of large nodes

Table 6.2: β′
b and h0 for di�erent scenario con�gurations

• The messages sent to the large node in the boosted scenario are smaller
than in HEFS.

• The simulation of the boosted scenario does not involve the cluster based
report creation which causes an additional transmission overhead.

The bold entries of table 6.2 show that HEFS performs better if the area is
larger but the density of large nodes does not change. In scenarios where
the average homogeneous hop count h0 is larger, the hop count of an injected
message relative to h0 is smaller.

SEF [36] is evaluated with h0 = 100. The resulting value β′ is approxi-
mately 1. It is di�cult to compare HEFS to SEF because of the di�erent net-
work structure. Compared to a homogeneous network, HEFS performs better
than SEF, but we have to consider that higher hardware costs are involved.
We can assume that HEFS achieves β′

b ≈ 1, as well when h0 = 100: Table 6.2
shows a value of β′

b ≈ 1.1 with h0 ≈ 88 (in the scenario 8000×200 (4000) with
100 large nodes).

6.3.2 Cryptographic operations

In other schemes [36, 35, 37], every forwarding sensor node is involved in the
veri�cation of MACs or signatures. HEFS uses cryptographic operations only
during report generation and on large nodes. As a result, small nodes do not
perform any cryptographic operations in reaction to an injected false report.

The cluster based generation of a report includes the following crypto-
graphic actions on each helper node (see �gure 5.13:

1. Creation of the SMAC-part (step 2). This computation is not only done
by the T helper nodes but also by other nodes that have received the
COOP1StimulusMessage from the cluster head and were able to verify
the report with their sensors.

2. Veri�cation of the SMAC (step 4). This means one computation of all
bloom-�lter hash-functions.

3. Creation of the LMAC-part (step 4).
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The cluster head additionally performs the creation of the SMAC out of the
SMAC-parts. This involves one computation of all bloom-�lter hash-functions.
Given h bloom-�lter hash-functions and k nodes that have received the COOP1-
StimulusMessage, the number of symmetric cryptographic operations caused
by one report generation is

z = k + T · (h + 2) MAC computations (6.6)

Assuming that k = 10, T = 5 and h = 16, then z resolves to z = 10 +
5 · (16 + 1) = 95. According to [17], one MAC computation of a 29-byte
packet consumes 49,92 µJ if the RC5 algorithm is used in CBC-MAC mode.
This leads to the following estimate for the energy consumed by cryptographic
operations:

Wcrypt ≈ 49, 92 · z µJ

report
= 4742, 4

µJ

report
(6.7)

Note that this is estimate is probably too high because it can be expected that
each bloom-�lter hash-function consumes less energy than the computation of
a MAC.

Nevertheless, the estimate shows that the energy consumed by crypto-
graphic operations is insigni�cant compared to the energy consumption of the
radio unit, which lies in the order of magnitude of 106µJ.

6.4 Long-Term-Analysis

The attacks considered in the previous sections of this chapter were launched
from small nodes only. In this section, we assume that an attacker has compro-
mised one large node A and up to T small nodes in order to inject messages.
The knowledge of κsec

a allows the attacker to create a degenerated report that
is not �ltered en-route but only detected by the sink. Such an action can have
two goals:

1. It can be a path-based denial of service attack. In this case the sink
excludes attacking nodes from the network after a number of injected
messages, so that the impact is limited to a constant amount of tra�c.
We estimate the energy consumption of such an attack from (1) the
average number of hops in a boosted scenario, (2) the size of a SRP
message (85 bytes), and (3) the number of injections that are possible
before the sink excludes an attacking node.

2. It can be a frameup attack: The attacker compromises a number of nodes
and makes sure that multiple degenerated reports are created in a way
such that the score of one innocent node A is increased in each report.
When the score of A exceeds the scoremax , A will be isolated from the
network.

Table 6.3 shows the hop count of a boosted con�guration in di�erent simulation
scenarios. Only messages transmitted by small nodes were counted as hops in
this table.
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area size (nodes) n avg.hops avg. neighbors

4000× 200 (2000)
50 30.4 18
100 20.3 18

2000× 2000 (6000)
100 24.8 12
200 20.4 12

Table 6.3: Average SRP hop-count and number of neighbors

Field: dest type TN R GR[0 . . . (T − 1)] µTESLA MAC

bytes: 2 1 2 2 · T 8

Figure 6.7: Assumed structure of the revocation broadcast for LE-keys

In the following evaluation, we consider the following energy-consuming
actions, exemplarily computed for the prolate scenario with 100 large nodes:

• the actual injected message: Assuming that the attacker can inject k
messages, before the compromised node is isolated, the energy consump-
tion of these messages is

Wmsg = k · 20.3 · 85 bytes · (59.20 + 28.60)
µJ

byte
= k · 140480.00µJ (6.8)

counting the 20.3 hops per injection, 85 bytes per message, 59.20 µJ/byte
for each transmission and 28.60 µJ/byte for each reception.

• the revocation broadcast of the LE-keys used in a degenerated report
(see section 4.7). This message is sent after each degenerated report. We
assume that this message is transmitted once by each node and that each
transmission is received by all its neighbors. The message is structured
as shown in �gure 6.7. The size for T = 5 is 23 bytes. With 18 neighbors
per node, 2000 nodes and 1000 large nodes (see table 6.3, the result is a
total energy consumption of the small nodes of

Wlek = 23 · ((2000− 100) · (59.20 + 18 · 28.60)) µJ = 25083800.00µJ
(6.9)

µTESLA also performs a commitement broadcast, containing the next
element of the hash-chain:

Wcom = 11 · ((2000− 100) · (59.20 + 18 · 28.60)) µJ = 11996600.00µJ
(6.10)

• the revocation of the compromised node. We assume that this informa-
tion is attached to the last LE-key revocation, increasing its message size
by 2 bytes:

Wfin = 25 · ((2000− 100) · (59.20 + 18 · 28.60)) µJ = 25083800.00µJ
(6.11)
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Figure 6.8: Wmsg and energy consumption of injected tra�c in the prolate
scenario

The energy consumption caused by one compromised large node is then

W = k ·Wmsg+ (k − 1) · (Wlek + Wcom)︸ ︷︷ ︸ + Wfin + Wcom︸ ︷︷ ︸
LE-key revocation last LE-key and

node revocation

(6.12)

The energy consumption of the injected message Wmsg is acceptable given that
the compromised node is removed after detection: Figure 6.8 shows the energy
consumption of three injected messages compared to the energy consumption of
β injected messages and one authentic report in the homogeneous and boosted
con�guration. Three injected degenerated reports correspond to β = 1 in the
homogeneous network and β = 3.3 in the boosted con�guration.

The energy consumption of the revocation broadcast is much higher be-
cause the message is re-broadcasted by every node in the network. Chapter 7
suggests a possible solution to this problem.

The number of potentially injected reports k depends on the applied scoring
system.

Static scoring The static scoring system computes the score of a small node
a as the number of evidence records ER for which a ∈ GR. The score of a large
node A is the number of evidence records for which A = TN R. This scoring
function leads to

k = bscoremaxc+ 1 (6.13)

If we assume scoremax = 2, this means that the attacker is able to send three
degenerated reports before detection. Thus a low scoremax reduces the energy
consumptions but also makes the system vulnerable to frameup attacks:

If an attacker tries to isolate a large node A from the network, he must
repeat the following actions k times (k = bscoremaxc+ 1):

1. compromise one small node and
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Table 6.4: Score increments for a report with g false SMAC-components

attack strategies
compromised large nodes 1
compromised small nodes 0 1 2 3 4
injections before detection 3 4 5 6 6

Table 6.5: Maximal injections of degenerated reports

2. wait for the opportunity to falsify the SMAC of a report with A as
transition node.

A will then be isolated by the sink because its score exceeds scoremax . Ev-
ery compromised small node can increase the score of A only once because the
LE-keys shared by TN R and GR are invalidated when the sink receives the de-
generated report. Nevertheless, every compromised small node can degenerate
k reports before being removed from the network. Thus with k compromised
small nodes, the attacker can ensure the removal of k large nodes from the
network. For scoremax = 2, this means that the attacker can remove three
large nodes by compromising three small nodes.

An attacker might also try to isolate small nodes from the network by
sending degenerated reports from a compromised large node. In this case,
he needs to compromise k large nodes to frame T small nodes. Before the
compromised large nodes are detected, he can then remove T · k small nodes.
For scoremax = 2 and T = 5, the attacker can remove 15 small nodes by
compromising three large nodes.

Dynamic scoring For the dynamic scoring scheme, we choose the parame-
ters A = 2 and e = 3. The resulting scores for GR, GR and TN R are shown in
table 6.4. We furthermore assume that scoremax = 1.

With this con�guration, an attacker can send k = 3 messages, after com-
promising only one large node. If he additionally compromises x < T small
nodes, k increases because he can then create messages with x correct SMAC-
components and T − x false ones. Table 6.5 shows the number of possible
message injections k after compromising one large node and x small nodes
before the compromised large node is detected.

The e�ort to perform a sucessful frameup attack is signi�cantly larger when
the dynamic scoring scheme is applied. First, we assume that an attacker
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attack strategies
compromised large nodes 1

compromised small nodes per report 1 2 3 4 5
necessary reports 7 6 5 4 3

total compromised small nodes 7 12 15 16 15
�reusability� (isolated large nodes) 5 6 7 8 9

Table 6.6: Necessary node compromise to frame large nodes

attack strategies
compromised small nodes 0 1 2 3 4

necessary reports 9 8 7 6 5
total compromised large nodes 9 8 7 6 5

innocent small nodes 5 4 3 2 1
�reusability� 3 4 5 6 6

total isolated (innocent) small nodes 15 16 15 12 6

Table 6.7: Necessary node compromises to frame small nodes

compromises x < T small nodes in order to increase the score of a large node
A beyond scoremax . Without a compromised large node, the attacker cannot
inject messages directly, but has to wait until the compromised small nodes are
involved in the creation of a report. Table 6.6 shows di�erent attack strategies
for framing a large node. The following example explains the values in the
�rst column:

The attacker uses one compromised small node to falsify one SMAC-
component for each report (�rst row). The score of A is increased by 1

6
, which

means that seven such reports are necessary to remove A from the network
(second row). Every compromised small node can only participate in one such
report because of the LE-key revocation. This means, that the attacker has to
compromise seven nodes to successfully frame A. The score of each compro-
mised node is increased by 1

4
when the report reaches the sink. This means

that each node can be �(re)used� for frameup attacks against other large nodes
up to �ve times before it is removed from the network (last row).

Table 6.6 shows that this example is the most e�cient attack strategy,
which requires compromising seven small nodes, but as a result �ve large nodes
can be removed from the network.

An attacker can also try to frame small nodes after compromising one large
node. Table 6.7 evaluates the strategies for this approach. The values in the
second column result from the following example: The attacker compromises
one large node and one small node (�rst row). The keys stored in these nodes
enable the attacker to inject degenerated reports with one correct and T−1 = 4
false SMAC-components, which results in score+

GR
(4) = 1

7
and score+

TNR
(4) = 1

3
.

Thus he has to create 8 such reports for a successful frameup attack (second
row). Again, each large node can only be used for one such report, so 8 large
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Key description number estimate
LEAP cluster keys d 10
LEAP pair-wise keys d 10
µTESLA veri�er 1 1
LBI-Keys c 1. . . 4
LE-Keys c · L 4. . . 16

total number of keys 26. . . 41
memory consumption in bytes (8bytes

key
) 208. . . 321

Table 6.8: Memory consumption of HEFS-keys. The third columns expects
values for d = 10, c = 1 . . . 4, L = 4

nodes must be compromised (third row) to frame the T −1 = 4 innocent small
nodes (fourth row) involved in the report. He can use every large node for 4
reports (�fth row) removing altogether 4 ·4 = 16 small nodes from the network
(last row).

This kind of frameup attack is only feasible if L is larger than the total
number of compromised large nodes. In the evaluated con�gurations, compro-
mising the L = 4 potential transition nodes of a small node a is su�cient to
isolate a from the network.

In conclusion, the dynamic scoring system makes frameup attacks di�cult
even if the threshold scoremax is low. In the static scoring system, the number
of injected reports before detection k is equal to the number of nodes that are
needed for a successful frameup attack. In the evaluated con�guration, the
dynamic scoring system forces the attacker to compromise seven nodes in a
con�guration that provides k = 3.

6.5 Memory usage

The data that needs to be stored in a sensor node's memory can be separated
into static and dynamic data. Static data includes data that needs to be stored
all the time such as cryptographic keys. Dynamic data includes temporary
data such as message bu�ers.

Static data Table 6.8 summarizes the memory consumption of crypto-
graphic keys in HEFS. This includes the keys used by LEAP and µTESLA.
Cluster and pairwise LEAP-keys are necessary for the local report generation
and secure routing. The LEAP group key and the LEAP individual key can be
omitted here: The group key is not used in any part of the scheme, assuming
that broadcasts are re-encrypted with cluster keys after each hop. The indi-
vidual key is not needed because the LBI-key has the same function in HEFS.
The number of needed LEAP keys depends on the node density d in the net-
work, which is the number of one-hop communication partners of a node. For
the estimation of consumed memory, we assume that d = 10. Generally, it is



76 CHAPTER 6. EVALUATION

important that d is signi�cantly larger than T in order to allow a cluster-based
report generation, even if some neighbors fail.

The number of localized keys depends on the cell size and the veri�cation
range: For each cell that is within veri�cation range, a key must be generated.
In the table, c is the number of cells in veri�cation range. For the estimate,
we assume that the edge of a cell is larger than twice the veri�cation distance.
This means that c ∈ {1, 2, 3, 4}, depending on whether the node is placed in
the middle, at the edge or in the corner of a cell.

Other sources of memory consumption are the routing tables. In HEFS,
two routing protocols must be implemented on each small node, which means
that multiple routing tables must be stored in the memory. In the simulator
implementation, the routing table of the TRP consumes 6 ·L bytes. The SRP
uses about 8 byte. In a real deployment, we can assume that these components
consume more memory in order to provide a higher robustness against node
failure.

Dynamic data Dynamic data does not occupy memory all the time but only
temporarily. The consumption sometimes depends on the number of events
and number of messages that the network processes at the same time.

• In the µTESLA protocol, every broadcast message must be stored until
the commitment value is received by the node. HEFS uses µTESLA to
broadcast node revocation messages. It is important, that these messages
are not ignored because of full message bu�ers.

• In step two of the local report generation, helper nodes supply their
SMAC-part (SM i) to the cluster head. In step four, they must verify
that SM i ∈SMAC. Thus they must store SM i in the memory. If a node
assists multiple cluster heads in the report generation, it may have to
store multiple SM i values at the same time, each of which consists of
8 bytes.

• When a node acts as cluster head in the local report generation, it col-
lects messages from neighboring nodes in steps 3 and 5. The number
of messages (and thus the number of stored bytes b) is limited by the
number of communication neighbors d. In step 3, at most d payloads of
a COOP2SMACPartMessage have to be stored. Assuming T = 5, d = 10
and L = 4, the memory consumption in the worst case is

d · 2 + 2 · L + 8 = 10 · 18 = 180 bytes (6.14)

In step 5, T payloads of a COOP4LMACPartMessage have to be stored,
which resolves to

T · 2 + 8 = 5 · 10 = 50 bytes (6.15)

At this time, the messages stored in step 3 can be removed from memory.
Thus about 180 bytes have to be temporarily available to a cluster head
during the report generation.
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occurences routing table
63 44 45 54 55
63 7 8 17 18
64 4 5 14 15
65 51 52 61 62
66 87 88 97 98
68 3 4 13 14
68 61 62 71 72
72 85 86 95 96
80 81 82 91 92
86 89 90 99 100
104 1 2 11 12

Figure 6.9: Most numerous TRP routing targets and their location

Summary If we assume an available memory size of 4 kBytes then the to-
tal memory consumption of 180 + 321 = 501 bytes is acceptable for a se-
curity framework. Still, a reduction of the overhead should be subject to
future work. We can abandon the LEAP cluster keys if the cluster head sends
the COOP1StimulusMessage and COOP3CollectedSMACMessage individually to
each neighbor. This would, however, consume more energy due to message
transmissions.

6.6 Failing large nodes

The TRP stores routes from each small node a to the L nearest large nodes.
When these L large nodes fail or are removed by the sink, the node a is
practically isolated from the network:

• It cannot be used as a helper node or as cluster head to create a report.

• It cannot forward any TRP messages.

The only thing it can can do, independently of the TRP routing table, is
forward SRP messages.

An attacker might take advantage of this fact and try to disable parts of
the network by compromising or destroying large nodes. In this section, we
assume that the attacker destroys exactly L large nodes to isolate a maximal
number of nodes.

In order to evaluate the impact, we have analyzed the routing tables of the
TRP in all small nodes of a scenario. In the context of this section, a routing routing table

table is a quadrupel (IDA1 , IDA2 , IDA3 , IDA4) of routing targets. The number
of occurences of a routing table is the number of small nodes that have exactly
the same targets in their table. Figure 6.9 shows the most numerous TRP
routing tables in a quadratic scenario with n = 100 large nodes. We can see
that the attacker could isolate 104 small nodes by destroying the large nodes
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Figure 6.10: Number of small nodes with the same potential transition nodes
in the prolate scenario (left) and the quadratic scenario (right)

1, 2, 11 and 12. These are the nodes in the upper left corner of the deployment
area. We can also see that the ten most numerous routing tables all contain a
square of large nodes at the border of the deployment area.

In �gure 6.10, the routing tables have been sorted by their number of
occurences x. The x-axis shows the index of the routing table sorted by x and
the y-axis shows the number of occurences.

We can see, that a larger number of large nodes results in more diversity in
the routing tables, so that the destruction of large nodes has a lower impact.
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Chapter 7

Conclusion & Future Work

In this thesis, we have developed a hybrid en-route �ltering scheme (HEFS)
for heterogeneous sensor networks. The term �heterogeneous� refers to the fact
that di�erent types of sensor nodes with di�erent resources are used in the net-
work. HEFS is a �hybrid� scheme because it employs public-key cryptography
as well as symmetric algorithms.

HEFS limits the impact of pDoS-attacks to a small area in the network.
The localization of endorsement keys ensures that false data injection attacks
are limited to the area of the compromised nodes: the attacker cannot create
reports of events in a certain region unless he has compromised enough nodes
in that particular part of the network. The use of public-key cryptography
on large nodes ensures that endorsement keys are not distributed on verifying
nodes. The public key signature also enables the sink to identify and remove
copromised nodes from the network. The result is a graceful degradation in
the sense that the compromised parts of the network degrade while the rest of
the network remains intact.

We have implemented a sensor network simulation framework in Java and
used this framework to develop a proof-of-concept implementation of HEFS.

The evaluation has shown that HEFS can signi�cantly reduce the impact of
pDoS-attacks on a sensor network. We have also noticed that the sink routing
protocol reduces the network tra�c signi�cantly, even if HEFS is not applied.

Future work

Some aspects of HEFS and the underlying protocols have not been investigated
in this thesis:

Applications of the transition routing protocol In future works, the
transition routing protocol could be extended to work as a basis for other
routing protocols. The small nodes only need one protocol implementation
and large nodes can mantain multiple routing tables on top of the TRP. The
following applications could be build upon the TRP:

• a more sophisticated version of the sink routing protocol: The
SRP in this thesis has the problem that large nodes are avoided if they
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are too far o�-the-route. A sink routing protocol built on the basis of the
TRP would always send messages via the next large node in direction of
the sink. Additionally, such a protocol could more easily �nd alternative
paths in case of node failure because large nodes can maintain �exible
and large routing tables while small nodes only forward TRP messages.

• a protocol for sink broadcasts: One of the major energy consumers
of HEFS is the revocation broadcast sent by the sink in reaction to
degenerated reports. On the basis of the TRP, the broadcast message
could �rst be sent to large nodes in the region of the keys or nodes that
are due to revocation. Theses target nodes could then broadcast the
message in their region.

Such a protocol could prevent that an attacker injects revocation broad-
casts with the goal of consuming the energy of all small nodes in the
network. µTESLA cannot prevent such an attack because the message
cannot be veri�ed while the broadcast takes place.

Memory consumption of LEAP A large part of HEFS' memory con-
sumption is caused by the pairwise keys and cluster keys needed by LEAP.
Since HEFS already provides authentication through the SMAC and LMAC,
it should be investigated, whether some or all keys of the LEAP-framework
can be omitted.

Location-binding for public-key signatures With the current version of
HEFS, the following problem still remains:

An attacker who compromises a large node and L small nodes can perform
a pDoS-attack with valid SRP-messages. He can even inject messages into
every part of the network. Yanchao Zhang et al. present an ID-based scheme
with localized private keys [37]. This location information becomes part of the
signature and can be veri�ed by en-route nodes.

Such a scheme would allow verifying large nodes to drop messages that do
not originate in their upstream area. It would also allow the sink to perform a
plausibility test by comparing the location of the report to the location of the
signing large node.

Cryptographic schemes There cryptographic signature schemes, such as
SFLASH [8] and QUARTZ [24], that have been developed explicitely to re-
duce the length of the digital signature. QUARTZ claims to provide security
equivalent to a 80-bit symmetric key with a signature length of 128 bits. The
drawback of this scheme is the size of the public key (71 kBytes). Nevertheless,
such schemes are worth being investigated for the use in heterogeneous sensor
network because the small signature size reduces the energy consumption of
small nodes.

Re-deployment of nodes HEFS makes the assumption that the attacker
cannot compromise nodes during the initialization phase. The re-deployment
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of nodes is di�cult because the secrets used to compute shared keys are deleted
at the end of the initialization phase. The re-creation of shared keys is an
important topic in two cases:

• If a small node has lost all potential transition nodes due to node failure
or in�ltration, it should be able to negotiate new LE-keys with other
large nodes.

• If a new large node is introduced into the network, LE-keys must be
setup with nearby small nodes.

Security analysis of bloom-�lters Bloom-�lters have been optimized and
evaluated in many non-security applications, but the use in security applica-
tions is relatively new. We have not found an analysis of the security properties
of bloom-�lters so far. This should be done, before bloom-�lters are really used
to compress multiple MACs.

Composition of published concepts Most of the publications (and this
thesis as well) reduce their scope to a small number of problems in the area of
sensor network security. This approach is certainly bene�cial for the analysis
of problem details, but it also hides the problems that arise in the composition
of di�erent concepts. A general problem is, that the memory and transmission
overhead of multiple combined schemes adds up, which reduces the memory
available to the application.

A large part of future work in the whole area of sensor networks consists of
combining concepts and resolving incompatibilities. With regard to this thesis,
this means the integration of methods to prevent denial-of-service attacks such
as the blackhole attack.
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Appendix A

Notation

Message transmissions
a −→ b : msg Node a sends msg to node b

a −→ ∗ : msg Node a sends a message to the broadcast address. Such
a message is received by all one-hop neighbors, but not
retransmitted to other nodes.

a −→ ∗∗ : msg Node a sends a multi-hop broadcast message. The mes-
sage is a sent to the broadcast address and retransmitted
by every receiving node. This mechanism is also called
�ooding.

Sensor nodes
a, b, x Small nodes

A, B Large nodes
CH Cluster head

TN R Transition node of a report R
GR Small nodes with invalid SMAC-component
GR Small nodes with valid SMAC-component

T N a potential transition nodes of a

Signatures, MACs and keys
〈D〉A data D with an attached public-key signature computed

with the private keyκsec
A .

MACK(D) MAC computed over data D with key K
MACK MAC computed over implicit data with key K

K lbi
a Location-based indiviual key of node a

K le
a,A Local endorsement key of a shared with A

κpub
a , κsec

A Public-private key pair of A

Hop counters (chapter 6)
h0 Average hop count in a homogenous network

hSRP Average hop count of a SRP message before �ltering
hTRP Average hop count of a TRP message before �ltering



83

Appendix B

Simulation results

Travelled hops of an injected message with area size 4000× 200 and 2000
nodes (left), 3000 nodes (right). Both graphs are almost identical.
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Consumed energy of one message and β injected messages for the quadratic
scenario (2000× 2000 with 6000 nodes and n large nodes)
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Consumed energy of one message and β injected messages for the prolate
scenario (2000× 200 with 1000 nodes and n large nodes)
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Consumed energy of one message and β injected messages for the prolate
scenario (4000× 200 with 2000 nodes and n large nodes)
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Consumed energy of one message and β injected messages for the prolate
scenario (6000× 200 with 3000 nodes and n large nodes)
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Consumed energy of one message and β injected messages for the prolate
scenario (8000× 200 with 4000 nodes and n large nodes)
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Appendix C

Scenario de�nition �les

A scenario de�nition consists of three �les that have to be placed in the same
directory: The �le layout.txt contains information about the nodes, topo.tex
contains information about the network connections and can be derived from
layout.txt. The �le heat.txt contains information about the heat model and is
optional.

A data directory can be loaded using the DataDirectory-class in the pack-
age org.knappi.wsn.definitionfiles, which encapsulates an accessor class
for each �le. Figure C.1 shows a simple example for a layout �le, a topology
�le and the resulting network.

layout.txt

This �le is loaded by the class LayoutFile. The �le consists of one row per
sensor node. Each line has the following �elds separated by spaces:

1. nodeId: The ID of the node

2. x: The x-location of the node

3. y: The y-location of the node

4. type: A string that de�nes the type of this node. This �eld can be
small,large or sink.

5. normal range: The radio transmission range of the node, when it is
sending without boost-mode.

6. boost range: The radio transmission range of the node, when it is
sending in boost-mode. For the sink-routing protocol to work, this must
be twice the normal range for large nodes. This value is irrelevant for
small nodes.

topo.txt

This �le is loaded by the class RadioTopologyFile. The �le consists of one
row per connection in the radio topology. The �elds in each lines are

1. startId: The node ID of sending sensor node
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layout.txt topo.txt Resulting network

3 70 246 small 60 60

2 60 208 large 60 120

4 70 41 small 60 60

1 60 125 large 60 120

0 30 125 sink 60 60

3 3 false

3 2 false

2 3 false

2 2 false

2 1 true

2 0 true

4 4 false

1 2 true

1 4 true

1 1 false

1 0 false

0 1 false

0 0 false

Figure C.1: Sample network scenario without a heat model

2. endId: The node ID of the receiving sensor node

3. boost: True if the receiving node is within the boost range of the trans-
mitting node. False if the receiving node is within the normal radio-range
of the transmitting node.

Connections from a node to itself are allowed in the �le. The radio model of
the simulator prevents messages to be received by the transmitting node.

heat.txt

This �le is loaded by the class HeatFile. The �rst line of this �le has two
�elds separated by spaces:

1. ambient heat: The ambient heat value

2. decrease: The decrement value of the heat model

Each of the following lines de�nes one heat source:

1. x: The x-location of the heat source

2. y: The y-location of the heat-source

3. value: The temperature of this heat source

A an example for the contents of a heat �le is

20.0 0.5

611 518 29.355995310402015

623 560 27.597014089728027

681 563 43.941141713641514

628 517 39.44759026891465
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public-key cryptography, 21

R
RadioNode, 39�41
RadioTopologyFile, 86
report, 12
routing table, 77
RoutingTable, 46



94 INDEX

S
scheduler, 42
SEF, 13
SensorNode, 39
SimpleAuthenticatedPayload, 55
simulation cycle, 43
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