Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting Misbehavior in Wireless Sensor Networks

Nils Knappmeier

IT Security Group Departement of Computer Science University of Technology Darmstadt

20.1.2005

Detecting Misbehavior in Wireless Sensor Networks

< Ē▶ 볼|늘 ∽ < @ 20.1.2005 1/28

A (10) A (10)

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Contents

Introduction and Motivation

- Sensor Networks
- Detecting misbehavior

2 Intrusion detection system

- Architecture
- Ruleset
- Evaluation
- 3 En-route-filtering of injected false data
 - Overview
 - Key distribution
 - Report generation and filtering
 - Evaluation

Conclusion

글 🕨 🖌 글

Introduction and Motivation $_{\odot\odot\odot}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Contents

Introduction and Motivation

- Sensor Networks
- Detecting misbehavior
- Intrusion detection system
 - Architecture
 - Ruleset
 - Evaluation
- 3 En-route-filtering of injected false data
 - Overview
 - Key distribution
 - Report generation and filtering
 - Evaluation
 - Conclusion

< 3 > < 3</p>

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Sensor Networks

Common challenges

Energy constraints

- Sensor running on battery
- Not likely to get a new battery soon
- Resource constraints
 - Little main memory
 - Small processing unit
- Autonomy
 - User is not nearby

- E

Introduction and Motivation $\circ \bullet \circ$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting misbehavior

What is misbehavior detection...

... and why is it important?

Even with

- encrypted communication and
- authentificated communication

Attacker may have physical access to sensor nodes!

• Extraction of cryptographic keys

• Wormhole, Blackhole, . . . attacks possible again

Introduction and Motivation $\circ \bullet \circ$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting misbehavior

What is misbehavior detection...

... and why is it important?

Even with

- encrypted communication and
- authentificated communication

Attacker may have physical access to sensor nodes!

Extraction of cryptographic keys

Wormhole, Blackhole,... attacks possible again

Introduction and Motivation $_{\odot \bullet \odot}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting misbehavior

What is misbehavior detection...

... and why is it important?

Even with

- encrypted communication and
- authentificated communication

Attacker may have physical access to sensor nodes!

Extraction of cryptographic keys

Wormhole, Blackhole,... attacks possible again

Introduction and Motivation $\circ \circ \bullet$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting misbehavior

What is misbehavior detection...

- Detect misbehaving nodes/compromised keys
 ⇒ "Decentralized intrusion detection system for WSN"

Introduction and Motivation $\circ \circ \bullet$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Detecting misbehavior

What is misbehavior detection...

- Detect misbehaving nodes/compromised keys
 ⇒ "Decentralized intrusion detection system for WSN"
- Handle intrusion when detected

 ⇒ "Statistical enroute-filtering of injected false data"

Introduction and Motivation $_{\circ\circ\circ}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Contents

Introduction and Motivation

- Sensor Networks
- Detecting misbehavior

2 Intrusion detection system

- Architecture
- Ruleset
- Evaluation
- 3 En-route-filtering of injected false data
 - Overview
 - Key distribution
 - Report generation and filtering
 - Evaluation
 - Conclusion

< 3 > < 3</p>

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Architecture

Global Architecture

Monitor nodes (3,7) use promiscous listening

Nodes do not move

- Nodes can be identified
- Reliable connection from monitor to sink

Detecting Misbehavior in Wireless Sensor Networks

(B) (A) (B)

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Architecture

Global Architecture

Monitor nodes (3,7) use promiscous listening

- Nodes do not move
- Nodes can be identified
- Reliable connection from monitor to sink

Detecting Misbehavior in Wireless Sensor Networks

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Architecture

Monitor node

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Ruleset

Retransmission, delay and integrity rule

Retransmission rule	Does 1 forward the message?	
	Blackhole attack or selective forwarding	
Integrity rule	M = M' ?	
integrity rule	Message alteration attack	
	t(M') - t(M) < treshold ?	
Delay Tule	Message delay attack	

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Evaluation

Simulation setup

Size	Sensors	100 nodes	
	Monitors	28 nodes	
Procedure	Total duration	10000 iterations	
	Learning phase	1000 iterations	
	10 attack cycles with each		
	Idle time	700 iterations	
	Attack duration	200 iterations	
	One compromised node		
Simulated	One form of attack		
	Network failure rate	10% (20%)	

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Evaluation

Detection effectivness Simulation results

	Small		Large	
	Message Buffer		Message Buffer	
Attack	DR	FP	DR	FP
Message delay	bad	few	good	hardly any
Blackhole	good	too many	good	few
Selective forwarding	medium	too many	good	few
Wormhole	good	many	good	few
Message repetition	good	few	good	hardly any
Jamming	good	medium	good	few
Data alteration	good	too many	medium	few

DR=Detection Rate **FI**

FP=False Positives

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Contents

- - Sensor Networks
- - Evaluation
- En-route-filtering of injected false data
 - Overview
 - Key distribution
 - Report generation and filtering
 - Evaluation

(B)

Introduction and Motivation	Intrusion detection system	En-route-filtering of injected false data ●oooooooo	Conclusion	Quellen
Overview				
Motivation of the statistical en	route-filtering			

What if initial report is already fabricated?

Goal: Recognition and early disposal of fabricated reports

.

A D M A A A M M

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Overview

General approach

Verification: En-route (to save energy) and at the sink
How to distribute the keys?

< 4 →

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Overview

General approach

• Verification: En-route (to save energy) and at the sink

• How to distribute the keys?

4 A N

.

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Overview

General approach

- Verification: En-route (to save energy) and at the sink
- How to distribute the keys?

글 🕨 🖌 글

Introduction and Motivation $_{\rm OOO}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Key distribution

Keys, categories, index numbers

Global key pool

Numbering, Partitioning

Detecting Misbehavior in Wireless Sensor Networks

20.1.2005 16 / 28

ELE NOR

イロト イ理ト イヨト イヨト

Introduction and Motivation $_{\rm OOO}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Key distribution

Keys, categories, index numbers

A B C D E 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

- Global key pool
- Numbering, Partitioning

< 17 ▶

A B A A B A

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Key distribution

A node stores 4 random keys from the same category

- Node S stores: {(1, *K*₁), (2, *K*₂), (3, *K*₃), (5, *K*₅)}
- Node T stores: {(4, K₄), (5, K₅), (6, K₆), (7, K₇)}
- Node U stores: $\{(1, K_1), (2, K_2), (4, K_4), (6, K_6)\}$

Detecting Misbehavior in Wireless Sensor Networks

V stores: $(3, K_{\star})$ (1)

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Key distribution

A node stores 4 random keys from the same category

• Node S stores: {(1, *K*₁), (2, *K*₂), (3, *K*₃), (5, *K*₅)}

Node T stores: {(4, K₄), (5, K₅), (6, K₆), (7, K₇)}

• Node U stores: {(1, K₁), (2, K₂), (4, K₄), (6, K₆)}

Detecting Misbehavior in Wireless Sensor Networks

Introduction and Motivation $_{\rm OOO}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Report generation and filtering

Report generation

(pos, timestamp, type), (2, MAC₂), (10, MAC₁₀), (17, MAC₁₇)

C detects stimulus

- report = (pos, timestamp, type) is verified
- Neighors return (*i*, MAC(report, K_i))

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三国王 のへ⊙

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Report generation and filtering

Report generation

(pos, timestamp, type), (2, MAC₂), (10, MAC₁₀), (17, MAC₁₇)

- C detects stimulus
- report = (pos, timestamp, type) is verified
- Neighors return (*i*, MAC(report, K_i))

- C detects stimulus
- report = (pos, timestamp, type) is verified
- Neighors return (*i*, MAC(report, K_i))

A D M A A A M M

C selects 3 MACs each of a different category

• C sends report to sink, with MACs attached

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- C selects 3 MACs each of a different category
- C sends report to sink, with MACs attached

A B F A B F

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Report generation and filtering

Statistical en-route filtering

(pos, timestamp, type), (2, MAC₂), (10, MAC₁₀), (17, MAC₁₇)

- 2 MACs from the same category? ⇒ Drop
- Invalid MAC found? ⇒ Drop
- MACs not verifiable or correct? ⇒ Forward

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Report generation and filtering

Statistical en-route filtering

(pos, timestamp, type), (2, MAC₂), (10, MAC₁₀), (17, MAC₁₇)

- 2 MACs from the same category? ⇒ Drop
- Invalid MAC found? ⇒ Drop
- MACs not verifiable or correct? ⇒ Forward

- Sink knows all keys of every category
- Verification all MACs attached to the report

Verification all MACs attached to the report

Detecting Misbehavior in Wireless Sensor Networks

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Evaluation

Theoretical efficiency estimate

	Total number	1000 keys
Keys	10 categories	100 keys
	Each node	50 keys
	Each report	5 MACs

Assuming the attacker has compromised $N_c < 5$ nodes.

- How likely that a node can identify a forged key?
- How likely that a forged key is identified after h hops?

A B F A B F

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Evaluation

Theoretical efficiency estimate

	Total number	1000 keys
Keys	10 categories	100 keys
	Each node	50 keys
	Each report	5 MACs

Assuming the attacker has compromised $N_c < 5$ nodes.

- How likely that a node can identify a forged key?
- How likely that a forged key is identified after h hops?

Intrusion detection system

En-route-filtering of injected false data 0000000000

Conclusion Quellen

Evaluation

Packets dropped after *n* hops... ... for 1,3 and 4 compromised categories

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Contents

- Introduction and Motivation
 - Sensor Networks
- - Evaluation
- - Key distribution
 - Report generation and filtering

Conclusion

(B)

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Conclusion

Misbehavior detection in sensor networks is possible

- Intrusion detection works for most attacks
- False injection detection also works
- 2 Both systems have open issues
 - Intrusion detection and encrypted communication
 - Alerting the sink
 - En-route-filtering adresses only a single attack
- Only systems for special aspects! Combination possible?
- I Evaluation mostly by simulation \rightarrow level-of-detail

Misbehavior detection in sensor networks is possible

- Intrusion detection works for most attacks
- False injection detection also works
- 2 Both systems have open issues
 - Intrusion detection and encrypted communication
 - Alerting the sink
 - En-route-filtering adresses only a single attack
- Only systems for special aspects! Combination possible?
- Evaluation mostly by simulation \rightarrow level-of-detail

Misbehavior detection in sensor networks is possible

- Intrusion detection works for most attacks
- False injection detection also works
- 2 Both systems have open issues
 - Intrusion detection and encrypted communication
 - Alerting the sink
 - En-route-filtering adresses only a single attack
- Only systems for special aspects! Combination possible?
 - Evaluation mostly by simulation ightarrow level-of-detai

Misbehavior detection in sensor networks is possible

- Intrusion detection works for most attacks
- False injection detection also works
- 2 Both systems have open issues
 - Intrusion detection and encrypted communication
 - Alerting the sink
 - En-route-filtering adresses only a single attack
- Only systems for special aspects! Combination possible?
- **9** Evaluation mostly by simulation \rightarrow level-of-detail

Misbehavior detection in sensor networks is possible

- Intrusion detection works for most attacks
- False injection detection also works
- 2 Both systems have open issues
 - Intrusion detection and encrypted communication
 - Alerting the sink
 - En-route-filtering adresses only a single attack
- Only systems for special aspects! Combination possible?
- **9** Evaluation mostly by simulation \rightarrow level-of-detail

Introduction and Motivation $_{\rm OOO}$

Intrusion detection system

En-route-filtering of injected false data

Conclusion Quellen

Quellen

Decentralized Intrusion Detection in Wireless Sensor Networks, Ana Paula R. da Silva, Marcelo H. T. Martins, Bruno P. S. Rocha, Antonio A. F. Loureiro, Linnyer B. Ruiz, Hao Chi Wong, October 2005, Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks Q2SWinet '05

Statistical En-route Filtering of Injected False Data in Sensor Networks, Fan Ye, Haiyun Luo, Songwu Lu, Lixia Zhang, UCLA Computer Science Departement, Los Angeles

Energy consumption

20.1.2005 27 / 28

Energy consumption

Base values for energy consumption

- Listening: 0.01 ^{mJ}/_{message}
 Receiving: 0.15 ^{mJ}/_{message}
- Sending: 0.48 mJ
- Results
 - Monitor nodes consume more energy
 - Nodes near the sink consume more energy

• = • • = •

Energy consumption

Base values for energy consumption

- Listening: 0.01 ^{mJ}/_{message}
 Receiving: 0.15 ^{mJ}/_{message}
- Sending: 0.48 mJ
- Results
 - Monitor nodes consume more energy
 - Nodes near the sink consume more energy