Handout: Detecting Misbehavior in Wireless Sensor Networks Nils Knappmeier Datum: 20.1.2006

1 Intrusion detection system

1.1 Ruleset

Role	Attack	Failure	
Router	Message delay		
	Blackhole	Massaga loss	
	Selective forwarding	Wiessage 1088	
	Wormhole		
	Message repetition		
	Jamming	Message collision	
	Data alteration	Data alteration	

Recognized attacks and similar network failures

Jamming rule

.	Number of message collisions > treshold
Jamming rule	Jamming attack

Interval rule and message repetition rule

Interval rule	$min_t < t(M_2) - t(M_1) < max_t$ Exhaustion attack or negliciency attack	
Repetition rule	$M_1 = M_2 = \ldots = M_k$ for $k < treshold$ Repetition attack	

Retransmission, delay and integrity rule

Retransmission rule	Does 1 forward the message? Blackhole attack or selective forwarding	
Integrity rule	M = M' ? Message alteration attack	
Delay rule	t(M') - t(M) < treshold ? Message delay attack	

1.2 Evaluation

Simulation setup

Sizo	Sensors	100 nodes	
5126	Monitors	28 nodes	
Procedure	Total duration	10000 iterations	
	Learning phase	1000 iterations	
	10 attack cycles with each		
	Idle time	700 iterations	
	Attack duration	200 iterations	
Simulated	One compromised node		
	One form of attack		
	Network failure rate	10% (20%)	

Simulation results (example)

Detection rate and false positives for the data alteration attack

2 En-route-filtering of injected false data

2.1 Key distribution

Keys, categories, index numbers

A node stores 4 random keys from the same category

- Node S stores: $\{(1, K_1), (2, K_2), (3, K_3), (5, K_5)\}$
- Node **T** stores: $\{(4, K_4), (5, K_5), (6, K_6), (7, K_7)\}$
- Node **U** stores: $\{(1, K_1), (2, K_2), (4, K_4), (6, K_6)\}$
- Node V stores: $\{3, K_3\}, (4, K_4), (6, K_6), (7, K_7)\}$

2.2 Report generation and filtering

Report generation

- 1. Stimulus detected
- 2. report = (pos, time, type) verified
- 3. Neighors return $(i, MAC(report, K_i))$
- 4. 3 MACs from distinct categories selected

Finally: $(pos, timestamp, type), (2, MAC_2), (10, MAC_{10}), (17, MAC_{17})$ sent to sink

Statistical en-route filtering

- 2 *MACs* from the same category? Invalid *MAC* found? \Rightarrow Drop
- MACs not verifiable or correct? \Rightarrow Forward

Filtering at the sink

Verification all MACs attached to the report

2.3 Evaluation

Theoretical efficiency estimate

- Total number of keys: N = 1000
- Number of categories: n = 10
- Number of key per category: m = 100
- How likely that a node can identify a forged key?

$$p_1 = \frac{T - N_c}{n} \cdot \frac{k}{m} = \frac{k(T - N_c)}{N}$$

• How likely that a forged key is identified after h hops?

$$p_h = 1 - (1 - p_1)^h$$

Packets dropped after *n* hops...

3 Quellen

References

- [1] Decentralized Intrusion Detection in Wireless Sensor Networks, Ana Paula R. da Silva, Marcelo H. T. Martins, Bruno P. S. Rocha, Antonio A. F. Loureiro, Linnyer B. Ruiz, Hao Chi Wong, October 2005, Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks Q2SWinet '05
- [2] Statistical En-route Filtering of Injected False Data in Sensor Networks, Fan Ye, Haiyun Luo, Songwu Lu, Lixia Zhang, UCLA Computer Science Departement, Los Angeles

- Number of keys per node: k = 50
- Number of MACs per report: T = 5
- Number of compromised categories $N_c < 5$